The Influence of High Magnetic Field on the Stability of CryoECAPed 1050 Alloy

2013 ◽  
Vol 774-776 ◽  
pp. 968-973
Author(s):  
Yi Heng Cao ◽  
Li Zi He ◽  
Xiao Tao Liu ◽  
Hai Tao Zhang ◽  
Ping Wang ◽  
...  

The evolutions of mechanical properties and microstructure of cryoECAPed 1050 alloy annealed at various temperatures from 150°C to 400°C for 1h with and without high magnetic field (HMF) were investigated by hardness test and electron back scattering diffraction pattern (EBSD) analysis. The abnormal grain growth happens in sample annealing at 400°C without a field. With the application of high magnetic field, the formation of the HABs is suppressed, the grain size distribution is homogeneous and no abnormal grain growth occurs.

2010 ◽  
Vol 312 (2) ◽  
pp. 323-326 ◽  
Author(s):  
Shuxiang Chen ◽  
Weishan Wang ◽  
Hirokage Kono ◽  
Kensuke Sassa ◽  
Shigeo Asai

1994 ◽  
Vol 343 ◽  
Author(s):  
J. A. Floro ◽  
C. V. Thompson

ABSTRACTAbnormal grain growth is characterized by the lack of a steady state grain size distribution. In extreme cases the size distribution becomes transiently bimodal, with a few grains growing much larger than the average size. This is known as secondary grain growth. In polycrystalline thin films, the surface energy γs and film/substrate interfacial energy γi vary with grain orientation, providing an orientation-selective driving force that can lead to abnormal grain growth. We employ a mean field analysis that incorporates the effect of interface energy anisotropy to predict the evolution of the grain size/orientation distribution. While abnormal grain growth and texture evolution always result when interface energy anisotropy is present, whether secondary grain growth occurs will depend sensitively on the details of the orientation dependence of γi.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012074
Author(s):  
Weixin Yu ◽  
Zhen Dai ◽  
Jifeng Zhao ◽  
Lulu Fang ◽  
Yiwen Zhang

Abstract The strength of P92 steel (tensile strength, specified plastic elongation strength) will decrease after its hardness is reduced, ferrite and carbides forming the structure. Carbides of grain size 5-6 are precipitated in the grains and grain boundaries. The martensite lath shape has completely disappeared. M23C6 carbide coarsened obviously, with a maximum size of about 500nm; The Laves phase is also aggregated and coarsened, connecting in a chain shape with a maximum size of more than 500nm. Evolution of microstructure, namely the obvious coarsening of M23C6 carbides and the aggregation and connection of Laves phases in a chain shape, are the main causes for rapid decrease in the stability of the material substructure and evident decline in mechanical properties and hardness. In addition, the MX phase did not change significantly, hardly affecting the hardness reduction of P92 steel.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1607
Author(s):  
Amir Hossein Baghdadi ◽  
Zainuddin Sajuri ◽  
Mohd Zaidi Omar ◽  
Armin Rajabi

Friction stir welding (FSW) is an alternative method to join aluminum (Al) alloys in a solid-state condition. However, the coarsening or dissolution of precipitation hardening phases in the welding zone causes strength reduction or softening behavior in the welded area of age-hardened Al alloys. Therefore, this research aimed to improve the mechanical properties of an FSW Al–Mg–Si alloy via post-weld heat treatment (PWHT) and the possibility of controlling the abnormal grain growth (AGG) using different welding parameters. FSW was performed with different rotational and travel speeds, and T6 heat treatment was carried out on the FSW samples as the PWHT. The results showed a decrease in the strength of the FSW samples compared with that of the base material (BM) due to the dissolution of precipitation hardening particles in the heat-affected zone. However, the emergence of AGG in the microstructure after the T6-PWHT was identified as the potential event in the microstructure of the PWHT samples. It is found that the AGG of the microstructure in similar joints of Al6061(T6) was governed by the welding parameters. The results proved that PWHT was able to increase the tensile properties of the welded samples to values comparable to that of Al6061(T6)-BM. The increased mechanical properties of the FSW joints were attributed to a proper PWHT that resulted in a homogeneous distribution of the precipitation hardening phases in the welding zones.


2018 ◽  
Vol 47 (12) ◽  
pp. 3678-3685 ◽  
Author(s):  
Zhao Ruifeng ◽  
Li Jinshan ◽  
Zhang Ying ◽  
Li Peixuan ◽  
Wang Jiaxiang ◽  
...  

2014 ◽  
Vol 1004-1005 ◽  
pp. 123-126 ◽  
Author(s):  
Jian Yin ◽  
Xiu Jun Ma ◽  
Jun Ping Yao ◽  
Zhi Jian Zhou

Effect of pulsed magnetic field treatment on the microstructure and mechanical properties of Mg97Y2Zn1 alloy has been investigated. When the pulsed magnetic field is applied on the alloy in semi-solid state, the α-Mg was modified from developed dendrite to fine rosette, resulting in a refined solidification microstructure with the grain size decreased from 4 mm to 0.5 mm. The volume fraction of the second phase ( X phase) increased by about 10 %. The yield strength, fracture strength and plasticity were improved by 21 MPa, 38 MPa and 2.4 %, respectively. The improvement of mechanical properties was attributed to the refined grain size and increased volume fraction of X phase.


2014 ◽  
Vol 790-791 ◽  
pp. 384-389
Author(s):  
Dirk Räbiger ◽  
Bernd Willers ◽  
Sven Eckert

This paper presents an experimental study which in a first stage is focused on obtaining quantitative information about the isothermal flow field exposed to various magnetic field configurations. Melt stirring has been realized by utilizing a rotating magnetic field. In a second step directional solidification of AlSi7 alloys from a water-cooled copper chill was carried out to verifythe effect of a certain flow field on the solidification process and on the resulting mechanical properties. The solidified structure was reviewed in comparison to an unaffected solidified ingot. Measurements of the phase distribution, the grain size, the hardness and the tensile strength were realized. Our results demonstrate the potential of magnetic fields to control the grain size, the formation of segregation freckles and the mechanical properties. In particular, time–modulated rotating fields show their capability to homogenize both the grain size distribution and the corresponding mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document