Effects of Calcium Carbonate on Melt Flow and Mechanical Properties of Rice Husk/HDPE and Kenaf/HDPE Hybrid Composites

2013 ◽  
Vol 795 ◽  
pp. 286-289 ◽  
Author(s):  
Abd Aziz Noor Zuhaira ◽  
Mohamed Rahmah

In this research, calcium carbonate (CaCO3) was compounded with rice husk/high density polyethylene (HDPE) and kenaf/HDPE composite at different filler loadings to produce hybrid composites. Melt flow index (MFI) and mechanical properties of hybrid composite was investigated. From the test results, the addition of CaCO3 filler had decreased melt flow index (MFI) on both composites. In terms of mechanical properties, tensile strength, elongation at break and impact strength decreased, whereas Youngs Modulus increased with the increase of CaCO3 in both kenaf/HDPE and rice husk/HDPE composites. Impact strength of unfilled rice husk/HDPE composite was lower than unfilled kenaf/HDPE composite, however impact strength of CaCO3/rice husk/HDPE hybrid composite were found to have slightly higher than CaCO3/kenaf/HDPE hybrid composite with addition of 10% and 20% of CaCO3.

2013 ◽  
Vol 701 ◽  
pp. 42-46 ◽  
Author(s):  
Abd Aziz Noor Zuhaira ◽  
Rahmah Mohamed

This research is to identify the difference in melt flow and mechanical properties in hybrid composites between kenaf and rice husk that each of the filler was compounded with composite material of calcium carbonate (CaCO3) and high density polyethylene (HDPE) in different loading amount. Different filler loading up to 30 parts of kenaf fibers and rice husk particulate were mixed with the fixed 30% amount of CaCO3. Compounded hybrid composite were prepared and tested for melt flow index, tensile and impact strength. Addition of both fillers had decreased melt flow index (MFI). MFI of rice husk/CaCO3 was higher than kenaf/CaCO3 in HDPE composites. Tensile strength, elongation at break and impact properties of both hybrid composites had decreased with increasing filler content. Tensile strength of kenaf/CaCO3 was higher than rice husk/CaCO3 due to intrinsic fiber structure of kenaf which has some reinforcing effect compared to rice husk. While, impact strength of rice husk/CaCO3 was improved with addition of filler but drastically decrease as the rice husk content were increased up to 30% due to high silica content in rice husk. The Youngs Modulus was increased with addition of natural fibers in CaCO3/HDPE composite.


Author(s):  
С. В. Сайтарли ◽  
В. П. Плаван ◽  
Л. С. Дзюбенко ◽  
О. С. Керенівський ◽  
Д. М. Євдокименко

To develop filled polymer compositions based on polypropylene with different contents of calcite concentrate as a filler and the newest polyolefin elastomer as a modifier; to define the influence of the compositions on their rheological and physico-mechanical properties for production injection molded goods. The values of viscosity, melt flow index, tensile strength, elongation, and impact strength and frost resistance of the compositions depending on their composition are determined by standard methods. The influence of calcite concentrate as a filler and polyolefin elastomer as a modifier on the rheological and mechanical properties of compositions has been determined. With an increase in the amount of filler the physical and mechanical properties of the filled compositions are reduce that is offset by introducing the newest polyolefin elastomer as a modifier in amount of 5 wt. %. Addition of 5 wt. % of polyolefin elastomer in the filled composition gives them frost resistance, wherein the impact strength is higher than for compositions without the modifier even after freezing for 30 days at -18°С. It has been determined that adding of the filler does not increase the viscosity of the compositions, which contradicts the traditional behavior of filled systems. The addition of 5 wt. % of polyolefin elastomer to the filled compositions with calcite concentrate up to 20 wt.% does not change the tensile strength of the compositions which is 24 MPa, but increases elongation by 2 times, impact strength by an average of 8,5 % and frost resistance after freezing compositions at -18 °C for 30 days by an average of 12,6 %. The research results of rheological and physic-mechanical properties allow choosing the rational composition to achieve the desired characteristics of the polymer material for production goods by injection molding. Melt flow index of the compositions increases with increasing amount of filler to 50 wt. %. which does not increase the production costs of the injection molding process in comparison with unfilled compositions.


2012 ◽  
Vol 85 (3) ◽  
pp. 521-532 ◽  
Author(s):  
Jeevan Prasad Reddy ◽  
Manjusri Misra ◽  
Amar Mohanty

In this research, switchgrass (SG) fiber-reinforced poly(trimethylene terephthalate) (PTT) biocomposites were prepared by extrusion followed by injection molding machine. The methylene-diphenyl-diisocyanate-polybutadiene (MDIPB) prepolymer was used to enhance the impact strength of the biocomposites. In addition, the polymeric methylene-diphenyl-diisocyanate (PMDI) compatibilizer was used to enhance the mechanical properties of the composites. The effect of compatibilizer on mechanical, crystallization melting, thermomechanical, melt flow index (MFI), morphological, and thermal stability properties of the composites was studied. Thermomechanical properties of the biocomposites were studied by dynamic mechanical analysis (DMA). Scanning electron microscopy (SEM) was used to observe the interfacial adhesion between the fiber and matrix. The results showed that MDIPB and PMDI have a significant effect on the mechanical properties of the composites. The impact strength of MDIPB- and PMDI-compatibilized composites was increased by 87 % when compared to the uncompatibilized composite.


Author(s):  
Ibrahim Hamarat ◽  
Emel Kuram ◽  
Babur Ozcelik

In this study, acrylonitrile butadiene styrene polymer was exposed to 12 injection cycles to investigate the influence of recycling number on the mechanical, rheological, and morphological properties. Also, binary and ternary blends including different weight percentages and recycling number of virgin–recycled polymers were prepared. A slight decrement was found in the tensile strength values with recycling number. All blends including recycled polymer (binary or ternary) gave lower tensile strength values with respect to 100% virgin polymer. Strain at break value was decreased after twelve times recycling; however, no clear tendency was observed with the presence of different ratios of virgin polymer to recycled polymer. Impact strength of the polymer decreased with recycling number. There was relatively large drop in the third recycling, from 72 kJ/m2 to 38.5 kJ/m2; however, further recycling induced in a slower drop in the impact strength to 32.5 kJ/m2. All blends including recycled material gave lower impact strength values as compared to 100% virgin polymer. It was observed that the melt flow index values increased with the recycling number, a total of 26.53% after twelve times recycling. All blends containing recycled material showed higher melt flow index values as compared to 100% virgin polymer.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
T. Raja ◽  
S. Ravi ◽  
Alagar Karthick ◽  
Asif Afzal ◽  
B. Saleh ◽  
...  

The usage of natural fibers has increased recently. They are used to replace synthetic fiber products in aircraft and automobile industries. In this study, natural fibers of bidirectional banyan mat and ramie fabrics are used for reinforcement, and the matrix is an epoxy resin to fabricate composite laminates by traditional hand layup technique at atmospheric temperature mode. Five different sequences of reinforcements are as follows to quantify the effect of thermal stability and mechanical behavior of silane-treated and untreated hybrid composites. The results revealed that silane-treated fabric composite laminates were given enhanced mechanical properties of 7% tensile, 11% flexural, and 9% impact strength compared with untreated fabric composite, and at the same time when the increasing of ramie fabric was given the positive influence of 41% improved tensile strength of 40.7 MPa, 49% improved in flexural strength of 38.9 MPa and negative influence in 57% lower impact strength in sample E and positive value in sample A 21.12 J impact energy absorbed in the hybrid composite. Thermogravimetric analysis (TGA) revealed the thermal stability of the hybrid composite. In sample A, the thermal stability is more than in other samples, and 410°C is required to reduce the mass loss of 25%. The working mass condition of the hybrid composite is up to 3.25 g after it moves to degrade.


2005 ◽  
Vol 21 (3) ◽  
pp. 219-230 ◽  
Author(s):  
Arup Choudhury ◽  
Mandira Mukherjee ◽  
Basudam Adhikari

The present investigation deals with the viability of the use of recycled milk pouch material, which is a 50:50 mixture of LDPE and LLDPE, and the scope for improvement of its properties by combining it with virgin LDPE-LLDPE (50/50). Melt flow index (MFI), rheological properties, thermal and mechanical properties of the pure materials and their formulated blends containing recycled milk pouches were studied. The properties of the recycled materials were not as satisfactory as those of the corresponding virgin materials. But a significant improvement in viscosity, crystallinity, tensile strength and elongation at break of the recycled LDPE-LLDPE material was achieved by blending it with the corresponding virgin LDPE-LLDPE blend.


e-Polymers ◽  
2016 ◽  
Vol 16 (5) ◽  
pp. 379-386 ◽  
Author(s):  
Keon-Soo Jang

AbstractMineral fillers (MFs) have been widely employed for polymer hybrid composites to enhance mechanical properties for the past few decades. In this study, we explored structural impacts of kaolin and talc on the mechanical, heat-resistant, rheological and flame retardant (FR) properties of the polycarbonate (PC) composites. The incorporation of these fillers into the polymer matrix enhanced mechanical properties like flexural and tensile modulus while elongation at break, impact strength and melt flow index (MFI) were reduced as a function of filler concentration. The heat deflection temperature (HDT) was slightly increased with increasing talc content. Infiltration of even 5 phr fillers dramatically enhanced the flame retardancy. Talc showed somewhat higher mechanics and FR characteristic, compared to kaolin. These PC/filler hybrid composites with enhanced mechanics and flame retardancy would be useful for a specific application by tailoring their ratios.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 552
Author(s):  
Luboš Běhálek ◽  
Jozef Dobránsky ◽  
Martin Pollák ◽  
Martin Borůvka ◽  
Pavel Brdlík

The paper deals with the possibility of applying physical methods to detect a thermally degraded recycled material in plastic parts made of polypropylene. Standard methods of evaluating the mechanical properties of the material under static tensile and bending stress, as well as under dynamic impact stress using the Charpy method, were used for the experimental measurements. The rheological properties of materials were monitored using a method involving measuring the melt flow index, while their thermal properties and oxidative stability were monitored using differential scanning calorimetry. Based on the methods used, it can be clearly stated that the most suitable technique for detecting thermally degraded recycled material in polypropylene is the method involving establishing the melt flow index. The bending test seems to be the most suitable method for detecting recycled material by measuring the material’s mechanical properties. Similarly to the melt volume flow rate (MVR) method, it was possible to unambiguously detect the presence of even a small amount of recycled material in the whole from measuring the material’s bending properties. It is clear from the results that in the short term, there may be no change in the useful properties of the parts, but in the long term the presence of degraded recycled material will have adverse consequences on their lifespan.


2021 ◽  
pp. 002199832110115
Author(s):  
Naseem Ahamad ◽  
Aas Mohammad ◽  
Moti Lal Rinawa ◽  
Kishor Kumar Sadasivuni ◽  
Pallav Gupta

The aim of the present paper is to examine the outcome of Al2O3-SiC reinforcements on structural and mechanical behavior of Al matrix based hybrid composites. Al-Al2O3-SiC hybrid composite has been developed through stir casting with addition of ceramics i.e. Al2O3-SiC (2.5 wt.%, 5.0 wt.%, 7.5 wt.% and 10.0 wt.%) in relative and symmetrical proportion. The structural characteristics, i.e. phase, microstructure, EDS; physical property i.e. density and the mechanical properties, i.e. hardness, impact strength and tensile strength of fabricated specimens have been investigated. XRD represents the transitional phase formation among Al base material and Al2O3-SiC ceramic phases with inter-atomic bonding between them. SEM reveals that the Al2O3-SiC fragments has distributed symmetrically in Al matrix. EDS spectrum of various samples are in confirmation with the XRD results. Density of hybrid composite reduces with increase in weight percentage of ceramic reinforcements i.e. Al2O3-SiC because ceramic particle gains low density after preheating. Hardness of hybrid composites increases upto 5 wt.% variation of ceramic reinforcements i.e. Al2O3-SiC after that it decreases. Impact strength of hybrid composite has been increased with an increase in weight percentage of ceramic. Al-2.5 wt.% Al2O3-2.5 wt.% SiC shows maximum ultimate tensile strength. It is expected that the prepared hybrid composites will be useful for fastener studs.


Sign in / Sign up

Export Citation Format

Share Document