Correlation of structural and mechanical properties for Al-Al2O3-SiC hybrid metal matrix composites

2021 ◽  
pp. 002199832110115
Author(s):  
Naseem Ahamad ◽  
Aas Mohammad ◽  
Moti Lal Rinawa ◽  
Kishor Kumar Sadasivuni ◽  
Pallav Gupta

The aim of the present paper is to examine the outcome of Al2O3-SiC reinforcements on structural and mechanical behavior of Al matrix based hybrid composites. Al-Al2O3-SiC hybrid composite has been developed through stir casting with addition of ceramics i.e. Al2O3-SiC (2.5 wt.%, 5.0 wt.%, 7.5 wt.% and 10.0 wt.%) in relative and symmetrical proportion. The structural characteristics, i.e. phase, microstructure, EDS; physical property i.e. density and the mechanical properties, i.e. hardness, impact strength and tensile strength of fabricated specimens have been investigated. XRD represents the transitional phase formation among Al base material and Al2O3-SiC ceramic phases with inter-atomic bonding between them. SEM reveals that the Al2O3-SiC fragments has distributed symmetrically in Al matrix. EDS spectrum of various samples are in confirmation with the XRD results. Density of hybrid composite reduces with increase in weight percentage of ceramic reinforcements i.e. Al2O3-SiC because ceramic particle gains low density after preheating. Hardness of hybrid composites increases upto 5 wt.% variation of ceramic reinforcements i.e. Al2O3-SiC after that it decreases. Impact strength of hybrid composite has been increased with an increase in weight percentage of ceramic. Al-2.5 wt.% Al2O3-2.5 wt.% SiC shows maximum ultimate tensile strength. It is expected that the prepared hybrid composites will be useful for fastener studs.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sekar Sanjeevi ◽  
Vigneshwaran Shanmugam ◽  
Suresh Kumar ◽  
Velmurugan Ganesan ◽  
Gabriel Sas ◽  
...  

AbstractThis investigation is carried out to understand the effects of water absorption on the mechanical properties of hybrid phenol formaldehyde (PF) composite fabricated with Areca Fine Fibres (AFFs) and Calotropis Gigantea Fibre (CGF). Hybrid CGF/AFF/PF composites were manufactured using the hand layup technique at varying weight percentages of fibre reinforcement (25, 35 and 45%). Hybrid composite having 35 wt.% showed better mechanical properties (tensile strength ca. 59 MPa, flexural strength ca. 73 MPa and impact strength 1.43 kJ/m2) under wet and dry conditions as compared to the other hybrid composites. In general, the inclusion of the fibres enhanced the mechanical properties of neat PF. Increase in the fibre content increased the water absorption, however, after 120 h of immersion, all the composites attained an equilibrium state.


2021 ◽  
Vol 4 ◽  
pp. 121-126
Author(s):  
Rezza Ruzuqi ◽  
Victor Danny Waas

Composite material is a material that has a multi-phase system composed of reinforcing materials and matrix materials. Causes the composite materials to have advantages in various ways such as low density, high mechanical properties, performance comparable to metal, corrosion resistance, and easy to fabricate. In the marine and fisheries industry, composite materials made from fiber reinforcement, especially fiberglass, have proven to be very special and popular in boat construction because they have the advantage of being chemically inert (both applied in general and marine environments), light, strong, easy to print, and price competitiveness. Thus in this study, tensile and impact methods were used to determine the mechanical properties of fiberglass polymer composite materials. Each test is carried out on variations in the amount of fiberglass laminate CSM 300, CSM 450 and WR 600 and variations in weight percentage 99.5% -0.5%, 99% -1%, 98.5% -1, 5%, 98% -2% and 97.5%-2.5% have been used. The results showed that the greater the number of laminates, the greater the impact strength, which was 413,712 MPa, and the more the percentage of hardener, the greater the impact strength, which was 416,487 MPa. The results showed that the more laminate the tensile strength increased, which was 87.054 MPa, and the more the percentage of hardener, the lower the tensile strength, which was 73.921 MPa.


2013 ◽  
Vol 701 ◽  
pp. 42-46 ◽  
Author(s):  
Abd Aziz Noor Zuhaira ◽  
Rahmah Mohamed

This research is to identify the difference in melt flow and mechanical properties in hybrid composites between kenaf and rice husk that each of the filler was compounded with composite material of calcium carbonate (CaCO3) and high density polyethylene (HDPE) in different loading amount. Different filler loading up to 30 parts of kenaf fibers and rice husk particulate were mixed with the fixed 30% amount of CaCO3. Compounded hybrid composite were prepared and tested for melt flow index, tensile and impact strength. Addition of both fillers had decreased melt flow index (MFI). MFI of rice husk/CaCO3 was higher than kenaf/CaCO3 in HDPE composites. Tensile strength, elongation at break and impact properties of both hybrid composites had decreased with increasing filler content. Tensile strength of kenaf/CaCO3 was higher than rice husk/CaCO3 due to intrinsic fiber structure of kenaf which has some reinforcing effect compared to rice husk. While, impact strength of rice husk/CaCO3 was improved with addition of filler but drastically decrease as the rice husk content were increased up to 30% due to high silica content in rice husk. The Youngs Modulus was increased with addition of natural fibers in CaCO3/HDPE composite.


2021 ◽  
Vol 10 (1) ◽  
pp. 1-7
Author(s):  
Rohit Kumar ◽  
Ramratan . ◽  
Anupam Kumar ◽  
Rajinder Singh Smagh

Elephant dung is an excellent source of cellulosic fiber that is a basic requirement for paper making. But they contributed to very small percentage production of elephant dung. So, researchers are trying to find a new area of utilization of elephant dung fiber pulp as in reinforcement’s polymer composite. In this experiment element dung fiber pulp in the natural fiber component chemically treated with alkaline and soda AQ solution in this study, it has been aimed to use elephant dung fiber pulp in composite material and to study mechanical properties of the produced material. The produced composite samples were then characterized using tensile test, Izod impact test, thickness test. The fracture surface of the polymer composite sample was also inspected with the help of SEM. The content of elephant dung fiber pulp is varied (35%, 45%, 55%) weight percentage whereas the epoxy resin is varied (50%, 40%, 30%) percentage is kept constant 15% in hardener. The entire sample has been tested in a universal testing machine as per ASTM standard for tensile strength and impact strength. It is observed that composite with 35% fiber pulp is having the highest tensile strength of 4mm 6.445 Mpa and 8mm 11.80 Mpa. The impact strength of composite with 35% fiber pulp washes highest than 45% to 55% dung fiber pulp. This produces composite sheet will be used for the surfboards, sporting goods, building panel this not only reduces the cost but also save from environmental pollution.


2017 ◽  
Vol 13 (10) ◽  
pp. 6558-6562
Author(s):  
A. Athijayamani ◽  
A.Sujin Jose ◽  
K. Ramanathan ◽  
S. Sidhardhan

In this study, Wood Dust (WD)/Phenol Formaldehyde (PF) and Coir Pith (CP)/PF composites were hybridized with the Prosopis Juliflora Fiber (PJF) to obtain the hybrid composites. Composites were prepared by hand moulding technique. The weight percentage of particles and fibers are fixed in the ratio of 1:1. Mechanical properties such as tensile, flexural and impact strengths were evaluated as a function of the particle and fiber loadings. The results show that the properties of both the WD and CP composites obviously improved by the addition of the PJF. The improvement in WD/PF composites was obviously higher than the CP/PF composites for all loadings. The WD/PJF/PF hybrid composites exhibited better tensile (strength of 48.9 MPA and modulus of 1262.1 MPa, respectively), flexural (strength of 55.4 MPa and modulus of 1344.3 MPa, respectively), and impact properties (1.32 KJ/m2). 


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
T. Raja ◽  
S. Ravi ◽  
Alagar Karthick ◽  
Asif Afzal ◽  
B. Saleh ◽  
...  

The usage of natural fibers has increased recently. They are used to replace synthetic fiber products in aircraft and automobile industries. In this study, natural fibers of bidirectional banyan mat and ramie fabrics are used for reinforcement, and the matrix is an epoxy resin to fabricate composite laminates by traditional hand layup technique at atmospheric temperature mode. Five different sequences of reinforcements are as follows to quantify the effect of thermal stability and mechanical behavior of silane-treated and untreated hybrid composites. The results revealed that silane-treated fabric composite laminates were given enhanced mechanical properties of 7% tensile, 11% flexural, and 9% impact strength compared with untreated fabric composite, and at the same time when the increasing of ramie fabric was given the positive influence of 41% improved tensile strength of 40.7 MPa, 49% improved in flexural strength of 38.9 MPa and negative influence in 57% lower impact strength in sample E and positive value in sample A 21.12 J impact energy absorbed in the hybrid composite. Thermogravimetric analysis (TGA) revealed the thermal stability of the hybrid composite. In sample A, the thermal stability is more than in other samples, and 410°C is required to reduce the mass loss of 25%. The working mass condition of the hybrid composite is up to 3.25 g after it moves to degrade.


Author(s):  
Mostafa Hassani Niaki ◽  
Morteza Ghorbanzadeh Ahangari ◽  
Abdolhossein Fereidoon

This paper studies the mechanical properties of polymer concrete (PC) with three types of resin systems. First, the effect of 0.5 wt% up to 3 wt% basalt fiber on the mechanical properties of a quaternary epoxy-based PC is investigated experimentally, and the best weight percentage of basalt fiber is obtained. The results show that adding basalt fiber to PC caused the greatest enhancement within 10% in compressive strength, 10% in flexural strength, 35% in the splitting tensile strength, and 315% in impact strength. In the next step, the effect of nanoclay particles on the mechanical properties of basalt fiber-reinforced PC (BFRPC) is analyzed experimentally. Nanoclays increase the compressive strength up to 7%, flexural strength up to 27%, and impact strength up to 260% but decrease the tensile strength of the PC. Field-emission scanning electron microscopy (FESEM) analysis is performed to study the fracture surface and morphology of various concrete specimens. In the last step, we consider the effect of two other different resin systems, rigid polyurethane and rigid polyurethane foam on the mechanical properties of reinforced polymer concrete. A comparison study presents that the epoxy PC has a higher specific strength than the polyurethane and ultra-lightweight polyurethane foam PC.


Author(s):  
B.K. Venkatesh ◽  
R. Saravanan

Cenosphere is a ceramic-rich industrial waste produced during burning of coal in the thermal power plants. This study deals with the effect of cenosphere as particulate filler on mechanical behaviour of woven bamboo-glass hybrid composites. The hybrid composite consists of bamboo and E-glass fiber as reinforcement and epoxy as matrix. Cenosphere of different weight percentage (0.5, 1, 1.5 and 2 %) was added to the hybrid composite. The samples were tested as per ASTM standards for their mechanical properties to establish the effect of filler content. It is found that the mechanical properties are significantly influenced by addition of waste ceramic filler cenosphere up to 2 wt.% and increases the tensile, flexural and inter-laminar shear strength in comparison to unfilled composite. Finite element analysis is also done using Midas NFX and the simulation results are compared with experimental results. From the results, it has been found that the experimental values obtained from tensile testing and flexure testing nearly matches with finite element values.


2019 ◽  
Vol 27 (9) ◽  
pp. 597-608 ◽  
Author(s):  
Agnivesh Kumar Sinha ◽  
Somnath Bhattacharya ◽  
Harendra Kumar Narang

Hybrid natural fibre polymer composites have attracted attention of research community owing to their better mechanical properties as compared to conventional materials. Besides being inexpensive, natural fibres are eco-friendly in nature. In past literature, abaca has shown tremendous potential for its suitability in structural applications. Present work deals with mechanical characterization and modelling of hybrid abaca epoxy composites with red mud as filler. Hybrid composites were prepared by hand lay-up technique. Experiments were designed based on full factorial method having three control parameters, namely weight percentage of abaca (2.6, 5.26 and 7.9 wt%), weight percentage of red mud (4, 8 and 12 wt%) and particle size of red mud (68, 82 and 98 µm). Flexural and impact strength of composites were evaluated. Mathematical models for flexural and impact strength of hybrid abaca composites were developed using response surface method. Developed models for mechanical properties of composite were analysed using analysis of variance to recognize the significance of control parameters or input variables on the mechanical properties of hybrid composites. Moreover, interaction effects of input variables on flexural and impact strength of hybrid composites were also investigated. Developed model also enables us to predict mechanical properties of hybrid composites.


Phenolic based PALF/nanoclay hybrid composites was prepared by adding Montmorillonite (MMT) as filler at different loading (1%, 2% and 3%) by using hot press technique. Obtained results indicated that adding MMT in PALF/phenolic composites considerably improves the tensile and flexural strength and modulus. Tensile properties showed that the tensile strength increased after adding MMT though tensile modulus decreased. Flexural strength and modulus were enhanced after adding MMT up to 2%, further addition of MMT declined the properties. 2% MMT showed better tensile and flexural properties. 3% MMT/PALF hybrid composite showed no further improvement in tensile properties after 2% MMT, however the flexural properties were reduced. 3% MMT did not improved much maybe agglomeration accrued. PALF/nanoclay/phenolic hybrid composites revealed good mechanical properties that encourage to use for structural purposes.


Sign in / Sign up

Export Citation Format

Share Document