Study on the Phytoavailability of Heavy Metal Lead, Copper, Zinc in Ilex Kudingcha C. J. Tseng Soil

2013 ◽  
Vol 807-809 ◽  
pp. 144-148
Author(s):  
Yang Yang He ◽  
Sheng Xu Luo ◽  
Hui Yan ◽  
Yu Jie Xiao ◽  
Yang Yu

Pot experiment was conducted with the cutting seedlings of Ilex kudingcha C. J. Tseng. By adding lead, copper solution and self-exist zinc in soil, we conducted the research for the phytoavailability of heavy metal in the different soil situation. The characterization methods of the phytoavailability were investigated. Results show that lead, copper and zinc are the strong absorption elements from BAC (Biological Absorption Coefficient) averages of 13 groups experiment. The order of BAC averages is lead > copper > zinc. 0.05mol/L EDTA-2Na can be used as the extracting agent of lead or copper, 0.1mol/L HCl can be used as the extracting agent of zinc. They can be used for the characterization methods about the phytoavailability of lead, copper, zinc in soil by the single extraction method. 0.1mol/L HC1 is adopted to extract soil, and weighted ion impulse of the lead, copper, zinc in the extraction fluid is calculated, which can well simultaneously characterize the phytoavailability of heavy metal lead, copper, zinc in kudingcha soil.

1995 ◽  
Vol 32 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Valérie Colandini ◽  
Michel Legret ◽  
Yves Brosseaud ◽  
Jean-Daniel Baladès

Porous pavements infiltrated with stormwater are faced with clogging problems: runoff particles seep and clog the pervious surface layer of these structures. Clogging material samples (in the form of sludge) have been collected in cleaning operations on the pervious asphalt. This study aims at characterizing these materials, particle size distribution, heavy metal contents by particle size, and studying interactions between metals and particles. A sequential extraction procedure proposed by the experts of the Community Bureau of Reference (B.C.R.) was applied to provide information about heavy metal distribution on particles and to evaluate interaction strength, and consequently potential metal mobility when chemical variations occurred in the environment. Mainly made up of sand, the materials are polluted with lead, copper, zinc and cadmium. The concentrations appeared to be linked with road traffic intensity. The heavy metal contents by particle size showed that the finer are the particles, the higher are the heavy metal concentrations. Heavy metals were found potentially labile; metals contents in the residual fraction (mineral fraction) represented less than 20 % of the total concentration. Cadmium and zinc were apparently more labile than lead and copper.


2018 ◽  
Vol 5 (2) ◽  
pp. 453
Author(s):  
H Haryono ◽  
Tjandra Setiadi

Extracellular polysaccaride extraction from activated sludge microorganism as heavy-metal adsorbent. Microorganisms in the form of bioagregate are the main component of activated sludge. It generally has an ability to produce EPS (extracellular polymeric substances). The important components in EPS are polysaccharides and proteins. EPS recovery from the activated sludge may be done by many extraction methods. Six of the extraction methods to extract EPS from the activated sludge have been studied in this research, such are: Middle Speed Centrifugation, Regular Centrifugation, NaOH Extraction, EDTA Extraction, Steaming Extraction and Sonication. EPS solution in the following step would be tested its performances as adsorbent of copper heavy metal. The research result shows that the best extraction method for EPS extraction was NaOH Extraction method. The amount of the polysaccharides obtained was 18,09 mg EPS/g TSS. On other hand, Steaming Extraction was the most ineffective extraction method. This method gives the polysaccharides result in the least amount, i.e., about 4,96 mg EPS/g TSS. In this research, the protein content was not detected in the all used EPS solution. In the adsorption test, the adsorption phenomena of copper metal with EPS adsorbent fitted to the Freundlich isotherm adsorption equation. The values of Freundlich's a constant (k and n) each were 2,282 and 0,963. The average maximum adsmption capaciry of EPS to metal Cu was 88,34 mg Cu/gEPS.Keywords:  Adsorption,  Heavy  Metal,  Activated  Sludge,  Extraction Methods, Polysaccharides Extracellular, Copper.AbstrakMikroorganisme dalam bentuk bioagregat adalah merupakan penyusun utama lumpur aktif, memiliki sifat  umum  yaitu  dalam  kemampuannya memproduksi  SPE (Senyawa  Polimer  Ekstraselluler). Komponen  utama dari SPE adalah polisakarida  dan protein. Pengambilan SPE dari bioagregat dapat dilakukan dengan banyak metode ekstraksi.Pada penelitian ini telah dipelajari karakteristik enam  metode  ekstraksi, yaitu: Sentrifugasi Kecepatan Sedang, Sentrifugasi Reguler, Ekstraksi dengan NaOH. Ekstraksi dengan EDTA, Ekstraksi dengan Pemanasan dan Sonikasi. Larutan SPE yang diperoleh, kemudian diuji kinerjanya sebagai adsorben logam berat tembaga. Hasil penelitian menunjukkan bahwa  metode ekstraksi terbaik adalah metode Ekstraksi dengan NaOH, dengan perolehan polisakarida sebesar 18,09 mg/g TSS. Sedangkan Ekstraksi dengan pemanasan merupakan metode ekstraksi yang paling tidak efektif dengan perolehan polisakarida paling sedikit, yaitu sekitar 4,96 mg/g TSS. Pada penelitian ini tidak dijumpai adanya protein di dalam larutan SPE dari semua  metode ekstraksi yang diterapkan. Pada uji adsorpsi, peristiwa adsorpsi logam  Cu dengan larutan SPE lebih mengikuti persamaan adsorpsi isoterm Freundlich dengan harga konstanta k dan n masing-masing sebesar 2,282 dan 0,963. Kapasitas adsorpsi maksimum rata-rata SPE terhadap logam Cu adalah sebesar 88,34 mg Cu/g SPE.Kata kunci:  Adsorpsi, Logam Berat, Lumpur Aktif, Metode Ekstraksi, Polisakarida Ekstraselluler, Tembaga.


2009 ◽  
Vol 390 (2) ◽  
pp. 109-113 ◽  
Author(s):  
Kuppusamy Balamurugan ◽  
Haiqing Hua ◽  
Oleg Georgiev ◽  
Walter Schaffner

Abstract Organisms from insects to mammals respond to heavy metal load (copper, zinc, cadmium, and mercury) by activating the metal-responsive transcription factor 1 (MTF-1). MTF-1 binds to short DNA sequence motifs, termed metal response elements, and boosts transcription of a number of genes, notably those for metallothioneins. In Drosophila, MTF-1 somewhat counter-intuitively also activates transcription of a copper importer gene (Ctr1B) in response to copper starvation. Here, we report that mutant flies lacking Ctr1B are extremely sensitive to cadmium and mercury treatment, but can be rescued by excess copper in the food. We thus propose that copper, by competing for binding sites on cellular proteins, alleviates the toxic effects of mercury and cadmium. Such a scenario also explains a seemingly fortuitous metal response, namely, that cadmium and mercury strongly induce the expression of a Ctr1B reporter gene. Thus, the transcription enhancer/promoter region of the Ctr1B copper importer gene is subject to three modes of regulation. All of them depend on MTF-1 and all make biological sense, namely, (i) induction by copper starvation, (ii) repression by copper abundance, and (iii), as shown here, induction by cadmium or mercury at normal copper supply.


2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
Christopher M. Miller ◽  
William H. Schneider IV ◽  
Mufuta J. Tshimanga ◽  
Philip Custer

To encourage sustainable engineering practices, departments of transportation are interested in reusing winter maintenance truck wash water as part of their brine production and future road application. Traffic-related metals in the wash water, however, could limit this option. The objective of this work was to conduct a pilot scale evaluation of heavy metal (copper, zinc, iron, and lead) removal in a filtration unit (maximum flow rate of 45 L/minute) containing proprietary (MAR Systems Sorbster®) media. Three different trials were conducted and approximately 10,000 L of wash water collected from a winter maintenance facility in Ohio was treated with the pilot unit. Lab studies were also performed on six wash-water samples from multiple facilities to assess particle size removal and estimate settling time as a potential removal mechanism during wash-water storage. Pilot unit total metal removal efficiencies were 79%, 77%, 63%, and 94% for copper, zinc, iron, and lead, respectively. Particle settling calculation estimates for copper and zinc show that 10 hours in storage can also effectively reduce heavy metal concentrations in winter maintenance wash water in excess of 70%. These pilot scale results show promise for reducing heavy metal concentrations to an acceptable level for reuse.


Author(s):  
Oksana MYAKUSH ◽  
◽  
Leonid SYSA ◽  

The article is a continuation of a series of scientific works of the authors on the study of the influence of microwave irradiation on the sorption parameters of natural sorbents in the processes of purification of natural and wastewater. Using the atomic absorption method, the sorption ability of the natural sorbent clinoptilolite (zeolite type of structure) to remove Copper, Zinc and Nickel ions from aqueous solutions was studied. It was found that different variants of microwave activation of this mineral (series «Nat», «Stim» and «DIR») lead to a significant increase in the sorption capacity of clinoptilolite by ions of these heavy metals. It is shown that in comparison with similar activation schemes of another natural sorbent of bentonite (clay material), the improvement of sorption parameters of clinoptilolite with respect to heavy metals is not as significant as in the case of bentonite. It is confirmed that in almost all solutions the deposition of heavy metals on clinoptilolite occurs according to the Langmuir or Langmuir-Freundlich model. A similar situation was observed in previous works of the authors on the deposition of heavy metals on bentonite. Using scanning electron microscopy, energy dispersion spectroscopy and X-ray phase analysis, it was found that the deposition of heavy metals on both bentonite and clinoptilolite occurs not only in the form of monolayers of hydrated ions in sorbent micropores (classical model), but also in the form of individual compounds. metals. It has been suggested that the action of microwaves on these sorbents in aqueous solutions improves the structure of their micropores and affects the surface charge, so some parts of the adsorbent become active centers of crystallization of new phases - heavy metal compounds. During adsorption of heavy metal by natural bentonite or clinoptilolite, low-energy adsorption centers predominate, whereas in the case of microwave-irradiated samples of these sorbents, the experimental data correspond to a symmetric quasi-Gaussian distribution of adsorption energy where low- and high-energy regions are present. This fact indicates that electromagnetic treatment stimulates the formation of new adsorption centers.


Author(s):  
S.S. Bobade ◽  
S.P. Dhekane ◽  
P.A. Salunke ◽  
S.G. Mane ◽  
S.S. Dhawan ◽  
...  

Background: Crop yields are limited by major biotic and abiotic stresses. Various studies had been suggested that abiotic stresses like drought, flood and salinity play a major role in limiting crop yield. Heavy metal contamination is also a major problem in the agriculture sector.Methods: A pot experiment was conducted to elucidate the effect of inoculating bacterial strains on the wheat plant under various stress conditions. The bacteria were isolated and screened from drought, flood and heavy metal stressed soil samples. The selected strains were identified by morphological, biochemical and molecular methods. The ability of Acinetobacter junni S1, Acinetobacter junni S2, Leclercia adecarboxylata and Klebsiella variicola to stimulate the growth of plants were determined by pot experiment using a completely randomized design. The positive effect of isolates on seed germination percent, shoot and root length of the treated wheat plant were recorded. Analysis of soil samples from pots was carried out for evaluation of the presence of macro and micronutrients. Result: The pots inoculated with selected isolates showed a significant increase in pH 7.77, EC 2.11, carbon 0.78, nitrogen 30.83 kg/ha, phosphorus 2.95 kg/ha, potassium 535.32 kg/ha, zinc 0.15 ppm, manganese 0.376 ppm, iron 0.53 ppm and copper 0.15 ppm as compared to control. The chlorophyll content estimation was carried out by using Arnon’s method. The chlorophyll a, b and total chlorophyll was found to be 14.39, 39.74 and 38.75 respectively.


Author(s):  
Dorin TIBULCA ◽  
Aurora TIBULCA ◽  
Mirela JIMBOREAN ◽  
Dan SALAGEAN

The investigation was intended to determine the contents of heavy metals (mercury, lead, copper, zinc, selenium, cadmium) and arsenic in 3 sorts of pressed cheese (Dalia, Rucăr, Penteleu) manufactured in five milk processing units.


Author(s):  
Jacek Antonkiewicz ◽  
Czesława Jasiewicz ◽  
Pavel Ryant

The studies conducted from 1997 to 1999 in a vegetation hall were performed as a pot experiment on ordinary silt soil. Jerusalem artichoke, maize, Sida hermaphrodita Rusby, amaranth and hemp were used as indicator plants. The results confirmed, great diversification of the element contents which depends not only on the species but also on the part of individual plants. Analysis of the data revealed also another dependence: increased concentration of heavy metals in the soil corresponded to a higher content of heavy metals in the plants. Significant differences in this respect were observed for the plant species grown in unpolluted or differently contaminated soil.


Sign in / Sign up

Export Citation Format

Share Document