Preparation of a Novel Nano-Polymer as Plugging and Filtration Loss Agent for Oil-Based Drilling Fluids

2013 ◽  
Vol 807-809 ◽  
pp. 2602-2606 ◽  
Author(s):  
Jian Hua Wang ◽  
Jian Nan Li ◽  
Li Li Yan ◽  
Yi Hui Ji

Oil-based drilling fluids and synthetic based drilling fluids are frequently used in shale-gas plays when wellbore stability is necessary. In this paper, a novel nano-polymer, as a plugging agent in oil-based drilling fluid, was prepared and characterized by Fourier transform infrared (FTIR), thermo-gravimetric analyses (TGA) and scanning electron microscopy (SEM). The rheological properties, high temperature-high pressure (HTHP) filtration properties and permeability plugging properties of oil-based drilling fluids were greatly improved by adding the nano-polymer, due to its nanometer size and the compact layer formed on the surface of the core.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Pengcheng Wu ◽  
Chengxu Zhong ◽  
Zhengtao Li ◽  
Zhen Zhang ◽  
Zhiyuan Wang ◽  
...  

Finding out the reasons for wellbore instability in the Longmaxi Formation and Wufeng Formation and putting forward drilling fluid technical countermeasures to strengthen and stabilize the wellbore are very crucial to horizontal drilling. Based on X-ray diffraction, electron microscope scanning, linear swelling experiment, and hot-rolling dispersion experiment, the physicochemical mechanism of wellbore instability in complex strata was revealed, and thus, the coordinated wellbore stability method can be put forward, which is “strengthening plugging of micropores, inhibiting filtrate invasion, and retarding pressure transmission.” Using a sand bed filtration tester, high-temperature and high-pressure plugging simulation experimental device, and microporous membrane and other experimental devices, the oil-based drilling fluid treatment agent was researched and selected, and a set of an enhanced plugging drilling fluid system suitable for shale gas horizontal well was constructed. Its temperature resistance is 135°C and it has preferable contamination resistibility (10% NaCl, 1% CaCl2, and 8% poor clay). The bearing capacity of a 400 μm fracture is 5 MPa, and the filtration loss of 0.22 μm and 0.45 μm microporous membranes is zero. Compared with previous field drilling fluids, the constructed oil-based drilling fluid system has a greatly improved plugging ability and excellent performance in other aspects.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3120
Author(s):  
Xianfeng Tan ◽  
Longchen Duan ◽  
Weichao Han ◽  
Ying Li ◽  
Mingyi Guo

To overcome the negative impact on the rheological and filtration loss properties of drilling fluids caused by elevated temperature and salts contamination, which are common in ultradeep or geothermal drilling operations, it is imperative to develop highly efficient additives used in the water-based drilling fluid. In this study, a zwitterionic copolymer P (AM/DMC/AMPS/DMAM, ADAD) was synthesized by using acrylamide (AM), cationic monomer methacrylatoethyl trimethyl ammonium chloride (DMC), anionic monomer 2-acrylamide-2-methyl propane sulfonic acid (AMPS), and N,N-dimethylacrylamide (DMAM) through free radical copolymerization. The copolymer was characterized by 1H Nuclear Magnetic Resonance (NMR), Fourier transform infrared spectroscopy (FTIR), elemental analysis, thermogravimetric analysis (TGA), and zeta potential. The rheological behavior, filtration properties, and the performance exposure to salt or calcium contamination in water-based drilling fluid were investigated. The bentonite/polymer suspension showed improved rheological and filtration properties even after aging at 160 °C or a high concentration of salt and calcium. The filtration loss can be greatly reduced by more than 50% (from 18 mL to 7 mL) by the inclusion of 2.0 wt% copolymer, while a slight increase in the filtrate loss was observed even when exposed to electrolyte contamination. Particle size distribution and zeta potential further validate the idea that zwitterionic copolymer can greatly improve the stability of base fluid suspension through positive group enhanced anchoring on the clay surface and repulsion force between negative particles. Moreover, this study can be directed towards the design and application of zwitterionic copolymer in a water-based drilling fluid.


Author(s):  
Ved Prakash ◽  
Neetu Sharma ◽  
Munmun Bhattacharya

AbstractRheological and filtration properties of drilling fluid contribute a vital role in successful drilling operations. Rheological parameters such as apparent viscosity (AV), plastic viscosity (PV), yield point (YP) and gel strength of drilling fluids are very essential for hydraulic calculations and lifting of drill cuttings during the drilling operation. Control of filtration loss volume is also very important for cost effective and successful drilling operations. Therefore, the main goal of this research is to improve the rheological and filtration properties of Grewia Optiva fibre powder (GOFP) by using 30–50 nm size of silica nano particles (SNP) in water-based drilling fluid. The experimental outcomes revealed that after hot rolling of mud samples at 100 °C for 16 h, the low pressure-low temperature (LPLT) and high pressure-high temperature (HPHT) filtration loss of GOFP additives was improved, after the addition of SNP on it. The mixture of 5% GOFP + 4% SNP has reduced the LPLT and HPHT filtration loss of drilling fluid by 74.03 and 78.12%, respectively, as compared to base mud. Thus, it was concluded that after the addition of 0.4% SNP, the LPLT and HPHT filtration control ability of GOFP additive in WBM were increased by 17.6 and 15%, respectively. The rheological parameters such as AV, PV, YP and gelation of drilling fluids were also improved by the addition of GOFP + SNP mixture in the base mud. Therefore, the implementation of GOFP + SNP mixture in water-based mud showed auspicious results which reaffirm the feasibility of using them in the successful drilling operations.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Biao Ma ◽  
Xiaolin Pu ◽  
Zhengguo Zhao ◽  
Hao Wang ◽  
Wenxin Dong

The lost circulation in a formation is one of the most complicated problems that have existed in drilling engineering for a long time. The key to solving the loss of drilling fluid circulation is to improve the pressure-bearing capacity of the formation. The tendency is to improve the formation pressure-bearing capacity with drilling fluid technology for strengthening the wellbore, either to the low fracture pressure of the formation or to that of the naturally fractured formation. Therefore, a laboratory study focused on core fracturing simulations for the strengthening of wellbores was conducted with self-developed fracture experiment equipment. Experiments were performed to determine the effect of the gradation of plugging materials, kinds of plugging materials, and drilling fluid systems. The results showed that fracture pressure in the presence of drilling fluid was significantly higher than that in the presence of water. The kinds and gradation of drilling fluids had obvious effects on the core fracturing process. In addition, different drilling fluid systems had different effects on the core fracture process. In the same case, the core fracture pressure in the presence of oil-based drilling fluid was less than that in the presence of water-based drilling fluid.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jinliang Liu ◽  
Fengshan Zhou ◽  
Fengyi Deng ◽  
Hongxing Zhao ◽  
Zhongjin Wei ◽  
...  

Abstract Most of bentonite used in modern drilling engineering is physically and chemically modified calcium bentonite. However, with the increase of drilling depth, the bottom hole temperature may reach 180 °C, thus a large amount of calcium bentonite used in the drilling fluid will be unstable. This paper covers three kinds of calcium bentonite with poor rheological properties at high temperature, such as apparent viscosity is greater than 45 mPa·s or less than 10 mPa·s, API filtration loss is greater than 25 mL/30 min, which are diluted type, shear thickening type and low-shear type, these defects will make the rheological properties of drilling fluid worse. The difference is attributed to bentonite mineral composition, such as montmorillonite with good hydration expansion performance. By adding three kinds of heat-resistant water-soluble copolymers Na-HPAN (hydrolyzed polyacrylonitrile sodium), PAS (polycarboxylate salt) and SMP (sulfomethyl phenolic resin), the rheological properties of calcium bentonite drilling fluids can be significantly improved. For example, the addition of 0.1 wt% Na-HPAN and 0.1 wt% PAS increased the apparent viscosity of the XZJ calcium bentonite suspension from 4.5 to 19.5 mPa·s at 180 °C, and the filtration loss also decreased from 20.2 to 17.8 mL.


2019 ◽  
Vol 3 (1) ◽  
pp. 31 ◽  
Author(s):  
Seyed Hosseini-Kaldozakh ◽  
Ehsan Khamehchi ◽  
Bahram Dabir ◽  
Ali Alizadeh ◽  
Zohreh Mansoori

Today, the drilling operators use the Colloidal Gas Aphron (CGA) fluids as a part of drilling fluids in their operations to reduce formation damages in low-pressure, mature or depleted reservoirs. In this paper, a Taguchi design of experiment (DOE) has been designed to analyse the effect of salinity, polymer and surfactant types and concentration on the stability of CGA fluids. Poly Anionic Cellulose (PacR) and Xanthan Gum (XG) polymers are employed as viscosifier; Hexadecyl Trimethyl Ammonium Bromide (HTAB) and Sodium Dodecyl Benzene Sulphonate (SDBS) have been also utilized as aphronizer. Moreover, bubble size distributions, rheological and filtration properties of aphronized fluids are investigated. According to the results, the polymer type has the highest effect, whereas the surfactant type has the lowest effect on the stability of CGA drilling fluid. It was also observed that increasing salinity in CGA fluid reduces the stability. Finally, it should be noted that the micro-bubbles generated with HTAB surfactant in an electrolyte system, are more stable than SDBS surfactant.


2020 ◽  
Author(s):  
Xian-Bin Huang ◽  
Jin-Sheng Sun ◽  
Yi Huang ◽  
Bang-Chuan Yan ◽  
Xiao-Dong Dong ◽  
...  

Abstract High-performance water-based drilling fluids (HPWBFs) are essential to wellbore stability in shale gas exploration and development. Laponite is a synthetic hectorite clay composed of disk-shaped nanoparticles. This paper analyzed the application potential of laponite in HPWBFs by evaluating its shale inhibition, plugging and lubrication performances. Shale inhibition performance was studied by linear swelling test and shale recovery test. Plugging performance was analyzed by nitrogen adsorption experiment and scanning electron microscope (SEM) observation. Extreme pressure lubricity test was used to evaluate the lubrication property. Experimental results show that laponite has good shale inhibition property, which is better than commonly used shale inhibitors, such as polyamine and KCl. Laponite can effectively plug shale pores. It considerably decreases the surface area and pore volume of shale, and SEM results show that it can reduce the porosity of shale and form a seamless nanofilm. Laponite is beneficial to increase lubricating property of drilling fluid by enhancing the drill pipes/wellbore interface smoothness and isolating the direct contact between wellbore and drill string. Besides, laponite can reduce the fluid loss volume. According to mechanism analysis, the good performance of laponite nanoparticles is mainly attributed to the disk-like nanostructure and the charged surfaces.


2002 ◽  
Vol 124 (4) ◽  
pp. 223-230 ◽  
Author(s):  
Neeraj S. Nandurdikar ◽  
Nicholas E. Takach ◽  
Stefan Z. Miska

Blast furnace slag (BFS) is a latent hydraulic material similar in composition to Portland cement. BFS was originally studied for mud to cement (MTC) purposes. This application called for large quantities of BFS (40–500 ppb (lb/bbl)) and ultimately proved to be ineffective. Subsequently, BFS has been investigated as an additive in drilling fluids. In a recent study, muds containing additive-level concentrations (5–30 lb/bbl) of BFS were shown to be effective in reducing formation damage. The present work extends the investigation of BFS as a drilling fluid additive. Specifically, we have explored the use of chemical reagents to activate the BFS in filter cakes to achieve cakes that are thin, impervious and firm. Filter cakes were formed from slag-laden drilling fluids in a high-pressure, high-temperature reverse filtration apparatus (permeability plugging apparatus). Studies were conducted with partially hydrolyzed polyacrlyamide (PHPA) muds and CaCO3-based fluids containing different loadings of BFS. Filter cakes of these fluids were treated with several different activators and the results were compared to cakes containing no BFS. Different activation techniques were investigated and a novel device was designed to measure the strength of the filter cakes. An environmental scanning electron microscope examined the relationship between the structural features of the activated cakes and their strengths. This study demonstrates that filter cakes containing BFS can be chemically activated to produce thin, firm cakes with improved filtration properties. These cakes should be able to form better bonds with cement subsequently used for completion.


Author(s):  
Massara Salam ◽  
Nada S. Al-Zubaidi ◽  
Asawer A. Al-Wasiti

In the process of drilling directional, extended-reach, and horizontal wells, the frictional forces between the drill string and the wellbore or casing can cause severe problems including excessive torque which is one of the most important problems during drilling oil and gas well. Drilling fluid plays an important role by reducing these frictional forces. In this research, an enhancement of lubricating properties of drilling fluids was fundamentally examined by adding Lignite NPs into the water-based drilling fluid. Lubricity, Rheology and filtration properties of water-based drilling fluid were measured at room temperature using OFITE EP and Lubricity Tester, OFITE Model 900 Viscometer, and OFITE Low-Pressure Filter Press, respectively. Lignite NPs were added at different concentrations (0.05 %, 0.1 %, 0.2 %, 0.5 %, and 1 %) by weight into water-based drilling fluid. Lignite NPs showed good reduction in COF of water-based drilling fluid. The enhancement was increased with increasing Lignite NPs concentrations; 23.68%, 35.52%, and 45.3 % reduction in COF were obtained by adding 0.2%, 0.5%, and 1% by weight Lignite NPs concentration, respectively.


2020 ◽  
Vol 26 (5) ◽  
pp. 211-230
Author(s):  
Adnan Ibrahim Barodi

Drilling fluid properties and formulation play a fundamental role in drilling operations. The Classical water-based muds prepared from only the Syrian clay and water without any additives((Organic and industrial polymers) are generally poor in performance. Moreover, The high quantity of Syrian clay (120 gr / l) used in preparing drilling fluids. It leads to a decrease in the drilling speed and thus an increase in the time required to complete the drilling of the well. As a result, the total cost of drilling the well increased, as a result of an increase in the concentration of the solid part in the drilling fluid. In this context, our study focuses on the investigation of the improvement in drilling mud   Prepared from the Syrian clay by reducing the clay concentration to (50 gr / L). And compensate for the remaining amount (70 gr / l) of clay by adding (natural and industrial polymers) The rheological properties and filtration are measured at different concentrations of polymers .. In light of the experiments, we determine the polymers' concentrations that gave good results in improving the flow properties and controlling the Filter. It is polymers that have given good results:، HEC، HEC and Xanthan Gum  PAC and HEC، CMCHV، PolyAcryl Amid ، Xanthan Gum .


Sign in / Sign up

Export Citation Format

Share Document