scholarly journals Effect of silica nano particles on the rheological and HTHP filtration properties of environment friendly additive in water-based drilling fluid

Author(s):  
Ved Prakash ◽  
Neetu Sharma ◽  
Munmun Bhattacharya

AbstractRheological and filtration properties of drilling fluid contribute a vital role in successful drilling operations. Rheological parameters such as apparent viscosity (AV), plastic viscosity (PV), yield point (YP) and gel strength of drilling fluids are very essential for hydraulic calculations and lifting of drill cuttings during the drilling operation. Control of filtration loss volume is also very important for cost effective and successful drilling operations. Therefore, the main goal of this research is to improve the rheological and filtration properties of Grewia Optiva fibre powder (GOFP) by using 30–50 nm size of silica nano particles (SNP) in water-based drilling fluid. The experimental outcomes revealed that after hot rolling of mud samples at 100 °C for 16 h, the low pressure-low temperature (LPLT) and high pressure-high temperature (HPHT) filtration loss of GOFP additives was improved, after the addition of SNP on it. The mixture of 5% GOFP + 4% SNP has reduced the LPLT and HPHT filtration loss of drilling fluid by 74.03 and 78.12%, respectively, as compared to base mud. Thus, it was concluded that after the addition of 0.4% SNP, the LPLT and HPHT filtration control ability of GOFP additive in WBM were increased by 17.6 and 15%, respectively. The rheological parameters such as AV, PV, YP and gelation of drilling fluids were also improved by the addition of GOFP + SNP mixture in the base mud. Therefore, the implementation of GOFP + SNP mixture in water-based mud showed auspicious results which reaffirm the feasibility of using them in the successful drilling operations.

Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3120
Author(s):  
Xianfeng Tan ◽  
Longchen Duan ◽  
Weichao Han ◽  
Ying Li ◽  
Mingyi Guo

To overcome the negative impact on the rheological and filtration loss properties of drilling fluids caused by elevated temperature and salts contamination, which are common in ultradeep or geothermal drilling operations, it is imperative to develop highly efficient additives used in the water-based drilling fluid. In this study, a zwitterionic copolymer P (AM/DMC/AMPS/DMAM, ADAD) was synthesized by using acrylamide (AM), cationic monomer methacrylatoethyl trimethyl ammonium chloride (DMC), anionic monomer 2-acrylamide-2-methyl propane sulfonic acid (AMPS), and N,N-dimethylacrylamide (DMAM) through free radical copolymerization. The copolymer was characterized by 1H Nuclear Magnetic Resonance (NMR), Fourier transform infrared spectroscopy (FTIR), elemental analysis, thermogravimetric analysis (TGA), and zeta potential. The rheological behavior, filtration properties, and the performance exposure to salt or calcium contamination in water-based drilling fluid were investigated. The bentonite/polymer suspension showed improved rheological and filtration properties even after aging at 160 °C or a high concentration of salt and calcium. The filtration loss can be greatly reduced by more than 50% (from 18 mL to 7 mL) by the inclusion of 2.0 wt% copolymer, while a slight increase in the filtrate loss was observed even when exposed to electrolyte contamination. Particle size distribution and zeta potential further validate the idea that zwitterionic copolymer can greatly improve the stability of base fluid suspension through positive group enhanced anchoring on the clay surface and repulsion force between negative particles. Moreover, this study can be directed towards the design and application of zwitterionic copolymer in a water-based drilling fluid.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4171
Author(s):  
Rabia Ikram ◽  
Badrul Mohamed Jan ◽  
Akhmal Sidek ◽  
George Kenanakis

An important aspect of hydrocarbon drilling is the usage of drilling fluids, which remove drill cuttings and stabilize the wellbore to provide better filtration. To stabilize these properties, several additives are used in drilling fluids that provide satisfactory rheological and filtration properties. However, commonly used additives are environmentally hazardous; when drilling fluids are disposed after drilling operations, they are discarded with the drill cuttings and additives into water sources and causes unwanted pollution. Therefore, these additives should be substituted with additives that are environmental friendly and provide superior performance. In this regard, biodegradable additives are required for future research. This review investigates the role of various bio-wastes as potential additives to be used in water-based drilling fluids. Furthermore, utilization of these waste-derived nanomaterials is summarized for rheology and lubricity tests. Finally, sufficient rheological and filtration examinations were carried out on water-based drilling fluids to evaluate the effect of wastes as additives on the performance of drilling fluids.


2021 ◽  
Author(s):  
Farqad Hadi ◽  
Ali Noori ◽  
Hussein Hussein ◽  
Ameer Khudhair

Abstract It is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works present valid and reliable results, they are expensive and time consuming. On the other hand, continuous and regular determination of the rheological mud properties can perform its essential functions during well construction. More uncertainties in planning the drilling fluid properties meant that more challenges may be exposed during drilling operations. This study presents two predictive techniques, multiple regression analysis (MRA) and artificial neural networks (ANNs), to determine the rheological properties of water-based drilling fluid based on other simple measurable properties. While mud density (MW), marsh funnel (MF), and solid% are key input parameters in this study, the output functions or models are plastic viscosity (PV), yield point (YP), apparent viscosity (AV), and gel strength. The prediction methods were demonstrated by means of a field case in eastern Iraq, using datasets from daily drilling reports of two wells in addition to the laboratory measurements. To test the performance ability of the developed models, two error-based metrics (determination coefficient R2 and root mean square error RMSE) have been used in this study. The current results of this study support the evidence that MW, MF, and solid% are consistent indexes for the prediction of rheological properties. Both mud density and solid content have a relative-significant effect on increasing PV, YP, AV, and gel strength. However, a scattering around each fit curve is observed which proved that one rheological property alone is not sufficient to estimate other properties. The results also reveal that both MRA and ANN are conservative in estimating the fluid rheological properties, but ANN is more precise than MRA. Eight empirical mathematical models with high performance capacity have been developed in this study to determine the rheological fluid properties based on simple and quick equipment as mud balance and marsh funnel. This study presents cost-effective models to determine the rheological fluid properties for future well planning in Iraqi oil fields.


2021 ◽  
Vol 11 (4) ◽  
pp. 1715-1726
Author(s):  
Ved Prakash ◽  
Neetu Sharma ◽  
Munmun Bhattacharya ◽  
Ashok Raina ◽  
Man Mohan Gusain ◽  
...  

AbstractThis work investigates the efficacy of a biodegradable natural product, litchi leaves powder (LLP) as a filtration loss control agent in the water-based drilling fluid formulations. In order to evaluate the potential of litchi leaves powder (LLP), a strict protocol of experimentations according to API (American Petroleum Institute) standard has been followed. The experimental outcome showed that before hot rolling and after hot rolling of mud samples at 100 °C it was observed that 3–5% Concentration of LLP significantly increased the rheological parameters such as PV, YP and gelation of drilling fluid as compared to reference mud. Also, LLP reformed the filtration loss control characterization, suggesting a better biodegradable fluid loss reducing agent. After hot rolling at 100 °C for 18 h, the water-based drilling fluid with LLP as an additive showed a marked reduction in filtration control property as compared to reference Mud (RM). Experimental results concluded that 5% concentration of LLP significantly reduced the filtration loss of drilling fluid by 70.6% as compared to reference mud under the influence of 100 psi pressure. However, the conventional fluid loss additive CMC (LVG) reduced the filtration loss by maximum 67.5% as compared to reference mud. Therefore, LLP can be used as an alternative to CMC (LVG) in water-based drilling fluid with a maximum subsurface temperature of 100 °C.


Author(s):  
Massara Salam ◽  
Nada S. Al-Zubaidi ◽  
Asawer A. Al-Wasiti

In the process of drilling directional, extended-reach, and horizontal wells, the frictional forces between the drill string and the wellbore or casing can cause severe problems including excessive torque which is one of the most important problems during drilling oil and gas well. Drilling fluid plays an important role by reducing these frictional forces. In this research, an enhancement of lubricating properties of drilling fluids was fundamentally examined by adding Lignite NPs into the water-based drilling fluid. Lubricity, Rheology and filtration properties of water-based drilling fluid were measured at room temperature using OFITE EP and Lubricity Tester, OFITE Model 900 Viscometer, and OFITE Low-Pressure Filter Press, respectively. Lignite NPs were added at different concentrations (0.05 %, 0.1 %, 0.2 %, 0.5 %, and 1 %) by weight into water-based drilling fluid. Lignite NPs showed good reduction in COF of water-based drilling fluid. The enhancement was increased with increasing Lignite NPs concentrations; 23.68%, 35.52%, and 45.3 % reduction in COF were obtained by adding 0.2%, 0.5%, and 1% by weight Lignite NPs concentration, respectively.


2020 ◽  
Vol 26 (5) ◽  
pp. 211-230
Author(s):  
Adnan Ibrahim Barodi

Drilling fluid properties and formulation play a fundamental role in drilling operations. The Classical water-based muds prepared from only the Syrian clay and water without any additives((Organic and industrial polymers) are generally poor in performance. Moreover, The high quantity of Syrian clay (120 gr / l) used in preparing drilling fluids. It leads to a decrease in the drilling speed and thus an increase in the time required to complete the drilling of the well. As a result, the total cost of drilling the well increased, as a result of an increase in the concentration of the solid part in the drilling fluid. In this context, our study focuses on the investigation of the improvement in drilling mud   Prepared from the Syrian clay by reducing the clay concentration to (50 gr / L). And compensate for the remaining amount (70 gr / l) of clay by adding (natural and industrial polymers) The rheological properties and filtration are measured at different concentrations of polymers .. In light of the experiments, we determine the polymers' concentrations that gave good results in improving the flow properties and controlling the Filter. It is polymers that have given good results:، HEC، HEC and Xanthan Gum  PAC and HEC، CMCHV، PolyAcryl Amid ، Xanthan Gum .


2013 ◽  
Vol 807-809 ◽  
pp. 2602-2606 ◽  
Author(s):  
Jian Hua Wang ◽  
Jian Nan Li ◽  
Li Li Yan ◽  
Yi Hui Ji

Oil-based drilling fluids and synthetic based drilling fluids are frequently used in shale-gas plays when wellbore stability is necessary. In this paper, a novel nano-polymer, as a plugging agent in oil-based drilling fluid, was prepared and characterized by Fourier transform infrared (FTIR), thermo-gravimetric analyses (TGA) and scanning electron microscopy (SEM). The rheological properties, high temperature-high pressure (HTHP) filtration properties and permeability plugging properties of oil-based drilling fluids were greatly improved by adding the nano-polymer, due to its nanometer size and the compact layer formed on the surface of the core.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Feng-shan Zhou ◽  
Ting-ting Wang ◽  
Zheng-qiang Xiong ◽  
Wen-yue Guo ◽  
Xi Xiang ◽  
...  

An oil-in-water nanomicron wax emulsion with oil phase content 45 wt% was prepared by using the emulsifying method of surfactant-in-oil. The optimum prepared condition is 85°C, 20 min, and 5 wt% complex emulsifiers. Then the abovementioned nanomicron emulsifying wax was immersed into a special water-soluble polymer in a certain percentage by the semidry technology. At last, a solidified self-dispersed nanomicron emulsified wax named as Ewax, a kind of solid lubricant for water based drilling fluid, was obtained after dried in the special soluble polymer containing emulsifying wax in low temperature. It is shown that the adhesion coefficient reduced rate(ΔKf)is 73.5% and the extreme pressure (E-P) friction coefficient reduced rate(Δf)is 77.6% when the produced Ewax sample was added to fresh water based drilling fluid at dosage 1.0 wt%. In comparison with other normal similar liquid products, Ewax not only has better performances of lubrication, filtration loss control property, heat resistance, and tolerance to salt and is environmentally friendly, but also can solve the problems of freezing in the winter and poor storage stability of liquid wax emulsion in oilfield applications.


2021 ◽  
Vol 21 (3) ◽  
pp. 123-130
Author(s):  
Ekaterina L. Leusheva ◽  
Nazim T. Alikhanov

Mining and geological conditions for the development of new fields are becoming more difficult every year. Accordingly, the requirements for ensuring the environmental and technological safety of the drilling process are becoming more and more important. To ensure such a process, it is necessary to use correctly selected drilling fluids with proper characteristics: rheological parameters sufficient for effective cleaning of the well bottom, density sufficient to create back pressure, fluid loss to ensure a high-quality filter cake. Modern environmental requirements dictate the abandonment of hydrocarbon-based solutions. But when using water-based solutions, there are no suitable solutions, especially with their high density, since the use of barite can lead to a decrease in reservoir productivity. In this regard, the analysis of the problem and the search for options for creating water-based drilling fluids, weighted without the addition of barite, having the properties of maintaining the stability of the wellbore, ensuring safe drilling and opening productive formations without damaging the reservoir characteristics, was carried out. Such a solution was found in changing the base of the drilling fluid - highly mineralized fluids or solutions based on saturated brines. Brines must be created on the basis of inorganic salts that have good solubility, for example, chlorides, bromides. Due to the content of salts, the fluids have an inhibitory effect, and depending on the volume of dissolution, the density of the drilling fluids can be controlled. The scientific works of foreign and domestic scientists analyzed in the article have been published over the past five years, which indicates the relevance of this development. The selected compositions are presented and theoretically investigated, which were also tested in the field conditions.


2021 ◽  
pp. 1-33
Author(s):  
Yee Cai Ning ◽  
Syahrir Ridha ◽  
Suhaib Umer Ilyas ◽  
Shwetank Krishna ◽  
Muslim Abdurrahman

Abstract A complete overview of the rheology and filtration properties of drilling fluids are essential to ensure an efficient transport process with minimized fluid loss. Silica nanoparticle is an excellent additive for rheology and filtration properties enhancement. Existing correlations are not available for nano-SiO2-water-based drilling fluid that can extensively quantify the rheology or filtration loss of nanofluids. Thus, two data-driven machine learning approaches are proposed for prediction, i.e., artificial-neural-network (ANN) and least-square-support-vector-machine (LSSVM). Parameters involved for the prediction of shear stress are SiO2 concentration, temperature, and shear rate, whereas SiO2 nanoparticle concentration, temperature, and time are the inputs to simulate filtration volume. A feed-forward multilayer perceptron is constructed and optimized using the Levenberg-Marquardt learning algorithm. The parameters for the LSSVM are optimized using Couple Simulated Annealing (CSA). The performance of each model is evaluated based on several statistical parameters. The predicted results achieved R2(coefficient of determination) value higher than 0.99 and MAE (mean absolute error) and MAPE (mean absolute percentage error) value below 7% for both the models. The developed models are further validated with experimental data that reveals an excellent agreement between predicted and experimental data.


Sign in / Sign up

Export Citation Format

Share Document