Design of 3-Dimensional Guidance Law of Missile Based on Discrete Sliding Mode

2013 ◽  
Vol 816-817 ◽  
pp. 976-980
Author(s):  
Nuan Wen ◽  
Zheng Hua Liu ◽  
Le Chang

In this article, a new approach to design discrete-time sliding-mode guidance laws is presented based on the target-missile relative motion equation in three-dimensional space. This method significantly reduced system chattering and could be easily achieved on engineering. Furthermore, effectiveness of the proposed guidance laws is demonstrated through simulation by comparing with the traditional proportional guidance laws.

2013 ◽  
Vol 671-674 ◽  
pp. 2111-2114
Author(s):  
Yan Ping Feng ◽  
Wei Guo Li ◽  
Li Bing Yang ◽  
Yan Li Gao ◽  
Wen Bin Li

3D laser scanning system is to use laser ranging principle to record intensively the 3D coordinates, reflectivity and texture information on the surface of the target object. It makes a real record of the three-dimensional space, which makes traditional measurement be released from the limit that couldn’t be exceeded in the past, and let the measurement precision up to a new level. At the same time, it has provided extensive researches with better help than ever. This paper mainly discusses the characteristics, working principle, application and future development of the ground 3 dimensional laser scanner.


Author(s):  
Sheng Sun ◽  
Di Zhou ◽  
Jingyang Zhou ◽  
Kok Lay Teo

The true proportional navigation guidance law, the augmented proportional navigation guidance law, or the adaptive sliding-mode guidance law, is designed based on the planar target-to-missile relative motion dynamics. By a proper construction of a nonlinear Lyapunov function for the line-of-sight angular rates in the three-dimensional guidance dynamics, it is shown that the three guidance laws mentioned above are able to ensure the asymptotic convergence of the angular rates as they are directly applied to the three-dimensional guidance environment. Furthermore, considering the missile autopilot dynamics as a first-order lag, we design three-dimensional nonlinear guidance laws by using the backstepping technique for three cases: (1) the target does not maneuver; (2) the information of target acceleration can be acquired; and (3) the target acceleration is not available but its bound is known a priori. In the first step of the backstepping design of the control law, there is no need to cancel the nonlinear coupling terms in the three-dimensional guidance dynamics in such way that the final expressions of the proposed guidance laws are significantly simplified. Thus, the proposed nonlinear Lyapunov function for the line-of-sight angular rates is a generalized function for designing three-dimensional guidance laws. Simulation results of a missile interception mission show that the proposed guidance laws are highly effective.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Sungsu Park

A new simple and practical guidance logic is proposed for a vehicle to follow a general continuous curvature path defined in a three-dimensional space. The proposed guidance logic is formulated in such a way that the guidance law is to generate the command acceleration such that a vehicle pursues the designed moving virtual target, and this eventually makes a vehicle to follow a desired path. The position and velocity of the virtual target are specified explicitly by introducing the concept of the projection point and the tangentially receding distance. Numerical simulations are conducted to evaluate the precise path-following capability of the proposed guidance logic.


Geology ◽  
2021 ◽  
Author(s):  
Heriberto Rochín-Bañaga ◽  
Donald W. Davis ◽  
Tobias Schwennicke

Previous U-Pb dating of fossils has had only limited success because of low uranium content and abundance of common Pb as well as element mobility during late diagenesis. We report the first accurate U-Pb dating of fossilized soft tissue from a Pliocene phosphatized bivalve mold using laser ablation–inductively coupled mass spectrometry (LA-ICPMS). The fossilized soft tissue yields a diagenetic U-Pb age of 3.16 ± 0.08 Ma, which is consistent with its late Pliocene stratigraphy and similar to the oldest U-Pb age measured on accompanying shark teeth. Phosphate extraclasts give a distinctly older age of 5.1 ± 1.7 Ma, indicating that they are likely detrital and may have furnished P, promoting phosphatization of the mold. The U-Pb ages reported here along with stratigraphic constraints suggest that diagenesis occurred shortly after the death of the bivalve and that the U-Pb system in the bivalve mold remained closed until the present. Shark teeth collected from the same horizon show variable resetting due to late diagenesis. Data were acquired as line scans in order to exploit the maximum Pb/U variation and were regressed as counts, rather than ratios, in three-dimensional space using a Bayesian statistical method.


Author(s):  
M.J. Richard

Pressing technological problems have created a growing interest in the development of dynamic models for the digital simulation of multibody systems. This paper describes a new approach to the problem of motion prediction. An extension of the “vector-network” method to rigid body systems in three-dimensional space is introduced. The entire procedure is a basic application of concepts of graph theory in which laws of vector dynamics are combined. The analytical procedure was successfully implemented within a general-purpose digital simulation program since, from a minimal definition of the mechanism, it will automatically predict the behavior of the system as output, thereby giving the impression that the equations governing the motion of the mechanical system have been completely formulated and solved by the computer. Simulations of the response of a rail vehicle which demonstrate the validity, applicability and self-formulating aspect of the automated model are provided.


2019 ◽  
Vol 16 (3(Suppl.)) ◽  
pp. 0786 ◽  
Author(s):  
Enadi Et al.

This paper presents a new transform method to solve partial differential equations, for finding suitable accurate solutions in a wider domain. It can be used to solve the problems without resorting to the frequency domain. The new transform is combined with the homotopy perturbation method in order to solve three dimensional second order partial differential equations with initial condition, and the convergence of the solution to the exact form is proved. The implementation of the suggested method demonstrates the usefulness in finding exact solutions. The practical implications show the effectiveness of approach and it is easily implemented in finding exact solutions.        Finally, all algorithms in this paper are implemented in MATLAB version 7.12.


2018 ◽  
Vol 41 (2) ◽  
pp. 321-339 ◽  
Author(s):  
Yu-Jie Si ◽  
Shen-Min Song

Three-dimensional finite-time guidance laws are proposed in this paper. Differing from the traditional approach that considers homing guidance problems as two identical and perpendicular channels, guidance laws proposed in this paper employ the coupled three-dimensional engagement dynamics to improve the guidance precision. A new reaching law is adopted to guarantee guidance laws continuous, which eliminates the chattering phenomenon caused by discontinuous terms. Moreover, the guidance law accelerates the convergence rate of closed-loop systems and avoids the singularity. Afterwards, the paper discusses the problem that the upper bound of the lumped uncertainty including the target information is unavailable. Therefore, to deal with this problem, another adaptive guidance law is presented, which can also guarantee the finite-time convergence of guidance systems. Numerical simulations have demonstrated that the two guidance laws have effective performance and outperform traditional terminal sliding mode guidance laws.


2020 ◽  
Vol 12 (2) ◽  
pp. 151-161
Author(s):  
M. RAJA ◽  
Ugur GUVEN ◽  
Kartikay SINGH

Navigation and guidance systems for most automobile as well as aerospace applications require a coupled chip setup known as Inertial Measurement Units (IMU) which, depending on the degree of freedoms, contains a Gyroscope (for maintaining orientation and angular velocity), Accelerometers (to determine acceleration in the respective direction) and a Magnetometer (to determine the respective magnetic fields). In the three-dimensional space, any required rotation analysis is limited to the coordinate systems and all subtended angles in either direction must be defined by a fixed axis to effectively estimate the stability and to define all the attitude estimates needed to compile different rotations and orientations. The Quaternions are mathematical notations used for defining rotations and orientation in three-dimensional space. The simplest terms Quaternions are impossible to visualize in a three-dimensional space; the first three terms will be identical to the coordinate system, but through Quaternions another vector quantity is added into the equations, which may in fact underline how we can account for all rotational quantities. The fundamental analysis of these components different applications for various fields is proposed.


Sign in / Sign up

Export Citation Format

Share Document