Preparation and Properties of Concrete Containing Iron Tailings/Manufactured Sand as Fine Aggregate

2013 ◽  
Vol 838-841 ◽  
pp. 152-155 ◽  
Author(s):  
Guo Dong Zhang ◽  
Xiu Zhi Zhang ◽  
Zong Hui Zhou ◽  
Xin Cheng

High performance concrete was prepared by using iron tailings mixed with manufactured sand. Effects of the content of iron tailings on the performance of concrete were studied. The results show that the slump of concrete containing iron tailings is equal to concrete with river sand when the content of iron tailings is 60%. With the increase of the content of iron tailings, compressive strength of concrete shows a trend of decrease at same age; meanwhile drying shrinkage decreases and is less than the concrete prepared river sand. After 200 times of freeze-thaw cycle, mass loss of concrete with mixed sand is less than 5% and compressive strength loss is less than 25% which are close to concrete with river sand.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zhi Cheng ◽  
Lei He ◽  
Lan Liu ◽  
Zhijun Cheng ◽  
Xiaobo Pei ◽  
...  

This study investigates the mechanical properties and durability of three families of high-performance concrete (HPC), in which the first was blended with fly ash, the second with circulating fluidized bed combustion (CFBC) ash, and the third with CFBC slag. In addition to each of the three mineral additives, silica fume and a superplasticizer were also incorporated into the HPC. Hence, three families of HPC, containing 10%, 20%, and 30% mineral admixtures and 9% silica fume of the binder mass, respectively, were produced. The microstructure and hydration products of the HPC families were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD) to explore the influence of fly ash, CFBC ash, and CFBC slag on the compressive strength and frost resistance of HPC. The experimental results show that the compressive strength of HPC could reach 60 MPa at 28 d age. When the fly ash content was 30%, the compressive strength of HPC was 70.2 MPa at 28 d age; after the freeze-thaw cycle, the mass loss and strength loss of HPC were 0.63% and 8.9%, respectively. When the CFBC ash content was 20%, the compressive strength of HPC was 75 MPa at 28 d age. After the freeze-thaw cycle, the mass loss and strength loss of HPC were 0.17% and 0.81%, respectively.


2006 ◽  
Vol 302-303 ◽  
pp. 356-362
Author(s):  
Xin Cheng Pu ◽  
Chong Wang ◽  
Chang Hui Yang ◽  
Zi Qiang Wang

This paper researches on the feasibility of preparing ultra-high strength & high performance concrete with low quality fine aggregate, such as super fine sand (fineness moduls≤1.10), chippings and manufactured sand. The results shows: with low quality fine aggregate, ultra-high strength & high performance concrete can be prepared, and with excellent fluidity and a compressive strength range of 70~120 MPa.


Author(s):  
Haruka Murakami ◽  
Hiromi Fujiwara ◽  
Masanori Maruoka ◽  
Takahumi Watanabe ◽  
Koji Satori

In recent years, as structures become higher, larger, and more durable concrete whose compressive strength of the concrete is 150 N/mm 2 or more have been put to practical use. It is for this reason that it is necessary to develop strengthening materials with equal or better performance. Furthermore, the development of high-performance concrete repair materials is carried out because demand to seismic strengthening and repair increases. In this study, considering these circumstances, it was conducted an experimental study with the aim of developing a repair material using room temperature curing UFC (R-UFC). A binder composition preparation of the R-UFC has excellent fluidity under pressure. It was achieved that high-grade thixotropy, high compressive strength, and high bending strength. It can also be sprayed continuously because of its high thixtoropy. It was confirmed that the sprayed thickness was reached to 20mm by one work. Durability of this R-UFC was investigated and it was confirmed the high sulfate resistance, small drying shrinkage and low salt permeability.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2090 ◽  
Author(s):  
Francisco Javier Vázquez-Rodríguez ◽  
Nora Elizondo-Villareal ◽  
Luz Hypatia Verástegui ◽  
Ana Maria Arato Tovar ◽  
Jesus Fernando López-Perales ◽  
...  

In the present work, the effect of mineral aggregates (pumice stone and expanded clay aggregates) and chemical admixtures (superplasticizers and shrinkage reducing additives) as an alternative internal curing technique was investigated, to improve the properties of high-performance concrete. In the fresh and hardened state, concretes with partial replacements of Portland cement (CPC30R and OPC40C) by pulverized fly ash in combination with the addition of mineral aggregates and chemical admixtures were studied. The physical, mechanical, and durability properties in terms of slump, density, porosity, compressive strength, and permeability to chloride ions were respectively determined. The microstructural analysis was carried out by scanning electronic microscopy. The results highlight the effect of the addition of expanded clay aggregate on the internal curing of the concrete, which allowed developing the maximum compressive strength at 28 days (61 MPa). Meanwhile, the replacement of fine aggregate by 20% of pumice stone allowed developing the maximum compressive strength (52 MPa) in an OPC-based concrete at 180 days. The effectiveness of internal curing to develop higher strength is attributed to control in the porosity and a high water release at a later age. Finally, the lowest permeability value at 90 days (945 C) was found by the substitutions of fine aggregate by 20% of pumice stone saturated with shrinkage reducing admixture into pores and OPC40C by 15% of pulverized fly ash. It might be due to impeded diffusion of chloride ions into cement paste in the vicinity of pulverized fly ash, where the pozzolanic reaction has occurred. The proposed internal curing technology can be considered a real alternative to achieve the expected performance of a high-performance concrete since a concrete with a compressive strength range from 45 to 67 MPa, density range from 2130 to 2310 kg/m3, and exceptional durability (< 2000 C) was effectively developed.


2014 ◽  
Vol 1044-1045 ◽  
pp. 624-628
Author(s):  
Jie Quan Xing ◽  
Shu Lin Zhan ◽  
Xin Yu Li

This paper studies the influence on compressive strength, freezing resistance and microstructure of cement mortar with different content of mica in stone powder, in the tests, manufactured sand with high content of mica and natural river sand were mixed with different proportion, and the content of stone powder was the same in mixed sand. Experiment results indicate that, with the increasing of mica content in stone powder, 28d and 60d compressive strength of cement mortar decreases obvious, mass loss rate and strength loss rate with 50 freeze-thaw cycles increase a little. Microstructure of cement mortar with higher content of mica is not compactly by SEM, the internal defects of cement hardened pastes could be increased because of the flake mica which surface is smooth, and it will cause the spread of micro crack.


2013 ◽  
Vol 351-352 ◽  
pp. 570-573
Author(s):  
Zhi Qiang Li ◽  
Xian Chun Zheng ◽  
Xiao Hong Cong

This study focuses on the following: analysis of the basic mechanical properties of freeze-thaw cycles BFRP composite; freeze-thaw cycle on BFRP reinforced concrete structures force performance; provide experimental basis for the the basalt FRP freeze-thaw environment concrete structure andtheoretical support.


2022 ◽  
Vol 961 (1) ◽  
pp. 012024
Author(s):  
Abdulrasool Thamer Abdulrasool ◽  
Noor R. Kadhim ◽  
Safaa S. Mohammed ◽  
Ahmed Abdulmueen Alher

Abstract Concrete curing is one of the most significant factors in the development of compressive strength, and a high temperature difference during curing may reduce strength. The microcracks created in the concrete as a result of the constant temperature change cause this exudation. Internal curing has become popular for decreasing the risk of early-age cracking in high-performance concrete by limiting autogenous shrinkage (HPC). This study looks at the effectiveness of internal wet curing offered by a new kind of aggregate called “recycled waste porous ceramic fine aggregates”. The evolution of measured mechanical characteristics is examined on three distinct HPCs, both with and without internal curing materials. Ceramic fine aggregates were used to replace two different quantities of regular weight fine aggregate. Ceramic fine aggregates were shown to be quite beneficial for internal cure. It has been discovered that incorporating 20% ceramic fine aggregates into HPC improves the properties of the material, resulting in low internal stress and a large improvement in compressive strength. It should be emphasized that, unlike some traditional lightweight aggregates, no loss in compressive strength has been seen for the various quantities of ceramic fine aggregates introduced at either early or later ages.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1023
Author(s):  
Abobakr Khalil Al-Shamiri ◽  
Tian-Feng Yuan ◽  
Joong Hoon Kim

Compressive strength is considered as one of the most important parameters in concrete design. Time and cost can be reduced if the compressive strength of concrete is accurately estimated. In this paper, a new prediction model for compressive strength of high-performance concrete (HPC) was developed using a non-tuned machine learning technique, namely, a regularized extreme learning machine (RELM). The RELM prediction model was developed using a comprehensive dataset obtained from previously published studies. The input variables of the model include cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, fine aggregate, and age of specimens. k-fold cross-validation was used to assess the prediction reliability of the developed RELM model. The prediction results of the RELM model were evaluated using various error measures and compared with that of the standard extreme learning machine (ELM) and other methods presented in the literature. The findings of this research indicate that the compressive strength of HPC can be accurately estimated using the proposed RELM model.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5353
Author(s):  
Khaled A. Eltawil ◽  
Mohamed G. Mahdy ◽  
Osama Youssf ◽  
Ahmed M. Tahwia

Experimental work was carried out to study new fine aggregate shielding construction materials, namely black sand (BS). The BS effect on the mechanical, durability, and shielding characteristics of heavyweight high-performance concrete (HWHPC) was evaluated. This study aimed at improving various HWHPC properties, concertedly. Fifteen mixtures of HWHPC were made, with various variables, including replacing 10% and 15% of the cement with fly ash (FA) and replacing normal sand by BS at various contents (15%, 30%, 45%, 60%, 75%, and 100%). The test specimens were subjected to various exposure conditions, including elevated temperatures, which ranged from 250 °C to 750 °C, for a duration of 3 h; magnesium sulfate (MS) exposure; and gamma-ray exposure. The effects of elevated temperature and sulfate resistance on concrete mass loss were examined. The results revealed that BS is a promising shielding construction material. The BS content is the most important factor influencing concrete compressive strength. Mixes containing 15% BS demonstrated significantly better strength compared to the control mixes. Exposure to 250 °C led to a notable increase in compressive strength. BS showed a significant effect on HWHPC fire resistance properties, especially at 750 °C and a significant linear attenuation coefficient. Using 10% FA with 15% BS was the most effective mixing proportion for improving all HWHPC properties concertedly, especially at greater ages.


Sign in / Sign up

Export Citation Format

Share Document