Design and Simulation Research on Mechanical Ventilation System for Small Underground Granary

2014 ◽  
Vol 875-877 ◽  
pp. 2148-2151
Author(s):  
Hai Hong Zhang ◽  
Zhong Ying Wang ◽  
Qiang Liu ◽  
Peng Fei Ma

The mechanical ventilation system of new type underground granary was designed and three wind pipe models with different length were investigated in this paper. Dynamic numerical simulation was applied for evaluating the cooling effect of mechanical ventilation of the granary. The simulation results, including temperature field, flow field and pressure field results, show that the cone shaped base of grain granary is better than flat shaped base. It is an optimal project that the main wind pipe opens with mesh only in the bottom. In addition, four vertical guide plates were set up around the main wind pipe, which have the function of saving energy and reducing consumption.

2013 ◽  
Vol 446-447 ◽  
pp. 458-462
Author(s):  
Jia Ning Li ◽  
Xin Liao ◽  
Feng Qiang Nan

In order to make a precise interpret and research of interior ballistics performance for a new-type light caliber cannon, an interior ballistics mathematical and physical model was established, on the basis of two-phase flow interior ballistics theory and description of interior ballistic cycle. MATLAB software was used to conduct numerical simulation. Conclusion indicates that the simulation results manifest favorable consistency with the experiment results. Simulation results can comprehensively interpret the physical process in guns by pressure distribution, projectile velocity and gas temperature distribution.


2018 ◽  
Vol 22 (8) ◽  
pp. 4425-4447 ◽  
Author(s):  
Manuel Antonetti ◽  
Massimiliano Zappa

Abstract. Both modellers and experimentalists agree that using expert knowledge can improve the realism of conceptual hydrological models. However, their use of expert knowledge differs for each step in the modelling procedure, which involves hydrologically mapping the dominant runoff processes (DRPs) occurring on a given catchment, parameterising these processes within a model, and allocating its parameters. Modellers generally use very simplified mapping approaches, applying their knowledge in constraining the model by defining parameter and process relational rules. In contrast, experimentalists usually prefer to invest all their detailed and qualitative knowledge about processes in obtaining as realistic spatial distribution of DRPs as possible, and in defining narrow value ranges for each model parameter.Runoff simulations are affected by equifinality and numerous other uncertainty sources, which challenge the assumption that the more expert knowledge is used, the better will be the results obtained. To test for the extent to which expert knowledge can improve simulation results under uncertainty, we therefore applied a total of 60 modelling chain combinations forced by five rainfall datasets of increasing accuracy to four nested catchments in the Swiss Pre-Alps. These datasets include hourly precipitation data from automatic stations interpolated with Thiessen polygons and with the inverse distance weighting (IDW) method, as well as different spatial aggregations of Combiprecip, a combination between ground measurements and radar quantitative estimations of precipitation. To map the spatial distribution of the DRPs, three mapping approaches with different levels of involvement of expert knowledge were used to derive so-called process maps. Finally, both a typical modellers' top-down set-up relying on parameter and process constraints and an experimentalists' set-up based on bottom-up thinking and on field expertise were implemented using a newly developed process-based runoff generation module (RGM-PRO). To quantify the uncertainty originating from forcing data, process maps, model parameterisation, and parameter allocation strategy, an analysis of variance (ANOVA) was performed.The simulation results showed that (i) the modelling chains based on the most complex process maps performed slightly better than those based on less expert knowledge; (ii) the bottom-up set-up performed better than the top-down one when simulating short-duration events, but similarly to the top-down set-up when simulating long-duration events; (iii) the differences in performance arising from the different forcing data were due to compensation effects; and (iv) the bottom-up set-up can help identify uncertainty sources, but is prone to overconfidence problems, whereas the top-down set-up seems to accommodate uncertainties in the input data best. Overall, modellers' and experimentalists' concept of model realism differ. This means that the level of detail a model should have to accurately reproduce the DRPs expected must be agreed in advance.


2011 ◽  
Vol 374-377 ◽  
pp. 702-705
Author(s):  
Wei Feng ◽  
Hui Min Li

In the underground building, Light environment and thermal environment is poorer, in order to improve the problem, this paper brings forward a new type of lighting and ventilation system model; discusses the principle and characteristics of transmission; and analyses the question that influences lighting and ventilated effect in the application. Structure design and numerical simulation is the focus of the next step.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Yong Peng ◽  
Tuo Xu ◽  
Lin Hou ◽  
Chaojie Fan ◽  
Wei Zhou

With the development of the subway and the pressing demand of environmentally friendly transportation, more and more people travel by subway. In recent decades, the issues about passenger passive safety on the train have received extensive attention. In this research, the head injury of a standing passenger in the subway is investigated. Three MADYMO models of the different standing passenger postures, defined as baseline scenarios, are numerically set up. HIC15values of passengers with different postures are gained by systematic parametric studies. The injury numerical simulation results of various scenarios with different friction coefficients, collision acceleration, standing angle, horizontal handrail height, and ring handrail height are analyzed. Results show that the horizontal handrail provides better protection in the three different standing passenger postures. Different friction coefficients and the standing angle have great impact on the head injuries of passengers in three different scenarios. The handrail height also has some effects on head injury of passengers with different standing postures, so it is necessary to be considered when designing the interior layout of the subway. This study may provide guidance for the safety design of the subway and some advices for standing subway passengers.


2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Jin Li ◽  
Xiaoli Fu ◽  
Shenglin Yan

Abstract Based on the study of leakage characteristics of labyrinth seal structure (LSS), a new type of combined seal structure (CSS) consisting of the labyrinth structure and the nozzle structure has been proposed. The sealing characteristics of CSS and LSS are compared by means of numerical simulation and experiments, and the effects of the internal resistance of the device, structural geometric parameters and other factors on the leakage characteristics of CSS are studied. The results illustrate the following conclusions: (a) When the inlet flow is 12 m3/h and the internal resistance of the device is 2000–4000 Pa, the leakage rate of CSS decreases by 30%–40% in comparison with that of LSS, which indicates that the performance of CSS is much better than that of LSS. (b) The leakage rate increases as the internal resistance of the device increases. When the internal resistance of the device increases from 2000 Pa to 8000 Pa, the leakage rate increases from 26% to 72%. (c) When the internal resistance of the device is constant, the larger the inlet flow, the smaller the leakage rate. (d) The choice of nozzle radius in structural geometric parameters is more important for the leakage rate than the tooth height and teeth numbers. When the nozzle radius decreases, ΔPAB (pressure difference between the labyrinth structure and the nozzle structure) and the leakage rate decrease accordingly.


2011 ◽  
Vol 255-260 ◽  
pp. 3692-3696
Author(s):  
Xiao Lei Zhang ◽  
Dong Po Sun ◽  
Feng Ran Zhang

The 2-D water and sediment mathematical model which reflects silting in floodplain and scouting in main channel of over-bank flooding in the Lower Yellow River has been set up in this paper. Through carrying on 2-D water and sediment numerical simulation of the “96.8” typical flood, the author studied influence of over-bank flooding on flood travel and transverse exchange. The primary simulation results show that, adopting the over-bank flooding for silting in floodplain and scouting in main channel effectively guaranteed and expanded transverse exchange between floodplain and main channel and maintained the river channel vigor. This can relieve “secondary suspended river” states in the Low Yellow River to a certain extent; at the same time, the different magnitudes of over-bank floods have different effect of silting in floodplain and scouting in main channel.


2013 ◽  
Vol 777 ◽  
pp. 440-443
Author(s):  
Yao Chen ◽  
Li Li ◽  
Bai Lu Yang ◽  
Chun Long Li

In order to study the effect of salinity wastewater discharging ways on the range of salt content rise nearby the outfall. Two three-dimensional numerical models of discharging ways which were single-port submerged-type and double-port submerged-type in the condition of subcritical flow were researched based on FLUENT. The range of salt content rise of the two discharging ways could be concluded according to the simulation results. The value of maximum salt concentration and average salt concentration of two discharging ways were compared and analyzed. The results showed that double-port submerged-type discharging way was better than single-port submerged-type discharging way.


2008 ◽  
Vol 33-37 ◽  
pp. 779-784
Author(s):  
Ji Chao Sun ◽  
Guang Qian Wang ◽  
Quan Chen Gao

The research about seepage of RSA is little, but the material is familiar. There are many difficulties in laboratory research about the materials, so numerical simulation research in the paper is introduced. The model of the random structure about SRA is set up, and then the study of seepage is given. The conversion of the two boundaries is solved correctly in the computer program. So some conclusions are drawn that the rock blocks the seepage to some degree, and the changing of RSA seepage is little under the effect of the fluctuating of rainfall intensity, namely the changing of the seepage is less than the fluctuating of rainfall intensity. The study is the foundation of the next study about the coupled of stress and seepage of RSA.


2010 ◽  
Vol 156-157 ◽  
pp. 360-366
Author(s):  
Kun Zhong ◽  
Zhong Hua Du ◽  
Liang Zhou ◽  
Li Li Song

Based on the advantages and disadvantages of existing active protection system, this paper proposes a new type of airbag active protection system. The components and working process of the system is introduced. Then taking the physical process of airbag active protection system against a rocket projectile as an example, a 3D finite element model (FEM) of airbag and rocket projectile is set up. With the assistance of the software LS-DYNA3D, through performing the simulation when the rocket projectile touched the airbag with an angle 30° from the normal interface, the intercepting efficiency is calculated and analyzed in the simulation. Results show that airbag can deform and rupture the metal jet generated by the rocket projectile, thus greatly reduce its armor penetrating effect. Finally, it shows excellent protective effect of the airbag active protection system.


Sign in / Sign up

Export Citation Format

Share Document