Study on the Oxidation Kinetics of In Situ β-Sialon Bonded Al2O3-C Refractories

2014 ◽  
Vol 881-883 ◽  
pp. 1021-1025 ◽  
Author(s):  
Bin Xu ◽  
Hong Xi Zhu ◽  
Nai Peng ◽  
Cheng Ji Deng ◽  
Wen Jie Yuan

The oxidation behaviors and kinetics of in-situ β-Sialon bonded Al2O3-C refractories were investigated by TGA techniques via isothermal oxidation experiments at different temperatures. The results show that the oxidation process of in-situ β-Sialon bonded Al2O3-C refractories can be divided into three stages: oxidation reaction rate controlling stage, reaction and diffusion controlling stage, and diffusion controlling stage. The oxidation rate controlled by the reaction rate has no obvious changes as the temperature increases. The oxidation rate controlled by the reaction rate and the diffusion rate together has a trend of decline, so is the oxidation rate controlled by the diffusion rate.

2016 ◽  
Vol 697 ◽  
pp. 572-575
Author(s):  
Xue Qing Yang ◽  
Nai Peng ◽  
Cheng Ji Deng

The kinetics of in-situ β- Sialon bonded Al2O3-C (SAC) refractories were investigated by TGA techniques via isothermal nitridation experiments at different temperatures. The result show that the nitridation process of in-situ β-Sialon bonded Al2O3-C refractories can be divided into two stages: the nitridation reaction rate controlling stage in the first 10 min, and the apparent activation energy of nitridation reaction is 370 kJ/mol ; then the reaction is controlled by both chemical reaction and diffusion rate in the following 110 min, the apparent activation energy of nitridation reaction is 410 kJ/mol.


2010 ◽  
Vol 105-106 ◽  
pp. 179-183 ◽  
Author(s):  
De Gui Zhu ◽  
Hong Liang Sun ◽  
Yu Shu Wang ◽  
Liang Hui Wang

Fully dense samples of TiB2-TiCX and TiB2-TiCX/15SiC ceramic composites were fabricated by in-situ synthesis under hot isostatic pressing from TiH2, B4C and SiC powders. Their oxidized behaviors at different temperatures were tested. Optical micrograph studies and thermo-gravimetric analyses show that the highest effective temperature of oxidation resistance is 700°C for TiB2-TiCX, and 1100°C for TiB2-TiCX/15SiC. The weight gain of TiB2-TiCX/15SiC below 1100°C is quite low, and it rises up suddenly when the temperature reaches 1200°C. Thus, the highest effective temperature of oxidation resistance is 1100°C for TiB2-TiCX/15SiC. The oxidation dynamic curves of TiB2-TiCX/15SiC ceramics accord with the parabola’s law. The activation energy of TiB2-TiCx/15SiC (189.87kJ.mol-1) is higher than that of TiB2-TiCx (96.44kJ.mol-1). In the oxidation process of TiB2-TiCx/15SiC, TiB2 reacts with oxygen and generates TiO2 and B2O3 at first. A layer of whole homogeneous oxide film cannot be formed, in the mean time, the oxidation of TiC begins. When temperature goes up to 1000°C, TiC phase is totally oxidized. SiC is oxidized to SiO2 at about 900°C, Meanwhile, TiO2 forms denser film than B2O3, which grows and covers the surface of the material, and gives better property of oxidation resistance.


1999 ◽  
Vol 06 (06) ◽  
pp. 1053-1060 ◽  
Author(s):  
N. TABET ◽  
J. AL-SADAH ◽  
M. SALIM

X-ray Photoelectron Spectroscopy (XPS) has been used to investigate the oxidation of (011) Ge substrates. The sample surfaces were CP4-etched, then annealed in situ, at different temperatures, for various durations. Dry and wet atmospheres were used. The oxidation rate during the early stage was increased by the presence of moisture in the atmosphere. A simple model was used to define and determine an apparent thickness of the oxide film from XPS measurements. The time dependence of the apparent thickness is consistent with a partial coverage of the surface by oxide islands. The growth kinetics of the oxide islands obeys a nearly cubic law.


2012 ◽  
Vol 472-475 ◽  
pp. 2223-2226
Author(s):  
Peng Fei Yang

Phenyl isocyanate is used to react with 1,3-butanediol at different temperatures. Toluene is used as solvent and 1,4-diazabicyclo[2,2,2]octane is used as catalyst. In-situ FT-IR is used to monitor the reaction to work out rate constant, Arrhenius equation and Eyring equation. The urethane reaction has been found to be a second order reaction, and the rate constant seems different between initial stage and final stage. The activation energy (Ea), activation enthalpy (ΔH) and activation entropy (ΔS) for the urethane reaction of primary hydroxyl group are calculated out, which are 26.4 kJ•mol-1, 23.6 kJ•mol-1and -186.6 J•mol-1•k-1, respectively. They are very useful to reveal the reaction mechanism.


2001 ◽  
Vol 56 (3) ◽  
pp. 281-286 ◽  
Author(s):  
Ceyhan Kayran ◽  
Eser Okan

Abstract The kinetics of the thermal substitution of norbornadiene (nbd) by 2,2'-bipyridine (2,2'-bipy) in (CO)4Mo(C7H9) was studied by quantitative FT-IR and UV-VIS spectroscopy. The reaction rate exhibits first-order dependence on the concentration of the starting complex, and the observed rate constant depends on the concentration of both leaving nbd and entering 2,2'-bipy ligand. The mechanism was found to be consistent with the previously proposed one, where the rate determining step is the cleavage of one of the two Mo-olefin bonds. The reaction was performed at four different temperatures (35 -50 °C) and the evaluation of the kinetic data gives the activation parameters which now support states.


2007 ◽  
Vol 546-549 ◽  
pp. 1739-1746 ◽  
Author(s):  
Dong Bai Xie ◽  
Sheng Long Zhu ◽  
Wen Jun Dai ◽  
Fu Hui Wang

The most common metallic coatings used in today’s gas turbine engines are MCrAlX (where M is Ni and/or Co and X is one or more reactive elements such as Y, Hf, etc.) type overlay coatings. However, overlay coating techniques (plasma and flame spraying or physical vapor deposition) are line-of-site processes, and so, it is possible not to deposit coating on some surface of the complex turbine components. The diffusion aluminide coatings can solve this problem. A NiCoCrAlY and diffusion aluminide coating were prepared on K38G cast alloy by multi-arc ion plating and low pressure chemical vapor deposition (LP-CVD) techniques, respectively. The isothermal oxidation behavior of K38G and the coatings was studied in air at 900 and 1000 oC. Their hot corrosion behaviors in the presence of 75 wt.% Na2SO4+K2SO4 and 75wt.%Na2SO4+NaCl film at 900oC were studied. The results showed that the two kinds coatings exhibited low oxidation rate at 900 and 1000oC and the presence of salt accelerated the oxidation rate. The NiCoCrAlY coating showed the better hot corrosion resistance than the aluminide coating.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
I. M. Alwaan

The goal of this study is to find the effect of time and temperature on the thermal degradation of recycled polyvinyl chloride (PVC) resin. The isothermal rate of reaction(r)of recycled PVC resin was investigated at the following temperatures to: 100, 110, 120, 130, and 140°C at period of times ranging from 10 to 50 min. The result shows that the rate of reaction(r)of recycled PVC increases with increasing temperatures. The reaction rate constant(K)for temperatures ranging from 100 to 140°C was doubled from 0.028–0.056 mol·L−1·S−1. The process was found to be zero order reaction at all range of temperatures 100–140°C. The activation energy of the thermal weight loss was calculated at different temperatures(E/R = 2739.5°K). The average enthalpy and entropy of reaction at temperature of 298°K were determined.


Sign in / Sign up

Export Citation Format

Share Document