Research on the Deformation Monitoring of Deep Foundation Pit Engineering

2014 ◽  
Vol 889-890 ◽  
pp. 1383-1387
Author(s):  
Ya Jun Yin ◽  
Xiao Long Liu ◽  
Yong Mei Qian

Because of the excavation of deep foundation pit will have an important impact on the surrounding buildings, causing serious safety risks, In this paper, though the deformation monitoring of deep foundation pit engineering in No.1 Hospital of Jilin University, It has an in-depth analysis and research on the deformation law of foundation pit and surrounding buildings at the stage of foundation pit construction. The results show that the deformation monitoring analysis of deep foundation pit engineering can not only realize the construction information of deep foundation pit , correctly guide the engineering construction, prevent engineering accidents, but also help to further improve the theory of foundation pit deformation, provide reliable data for the design.

2014 ◽  
Vol 638-640 ◽  
pp. 614-619
Author(s):  
Bo Liu ◽  
Qing Nan Liu ◽  
Yi Yan Zhao ◽  
Bing Hui Chen

Dismantling the inner support of deep foundation pit is a risk point.It is of great importance to guarantee the safety of foundation pit when removing the inner support, and the deformation monitoring and analysis in the process of dismantling inner support is crucial. In this paper, a super deep foundation pit engineering as the research background.Through monitoring and analyzing the law of a deep horizontal displacement of the supporting structure,ground settlement, vertical settlement and axial force of support in the process of support demolition,which can be obtained that: the settlement of surface ground around the foundation shows spatial and temporal clearly and the distribution of deep horizontal displacement of supporting structure is similar to the parabolic which the maximum point constant upward shift with supporting continuous removed.Soil pressure of supporting shared with support removing process is changing, and the earth pressures support sharing is increasing. From the monitoring results, the demolition scheme is reasonable and effective and meets the requirements of design and environment.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Jing Wang ◽  
Pengcheng Wang ◽  
Wenda Wang ◽  
Shouqiang Zhou ◽  
Xiang Fang

This paper theoretically analyzed the deformation law of the underlying tunnel caused by dewatering and excavation of deep foundation pit in the phreatic aquifer area, which is based on the Mindlin solution and the double-sided elastic foundation beam theory, and used the finite difference method and the fluid-solid coupling principle to conduct three-dimensional numerical simulation of dewatering and excavation of deep foundation pit with fluid-solid coupling by using FLAC3D5.00. This research shows that the layered and segmented excavation method from the middle to the end by dewatering the skip layer has a better effect on optimizing the deformation of the underlying tunnel through the simulation of three excavation methods and two dewatering schemes crossing each other, which is about 2.5% less than the layer-by-layer dewatering scheme. In addition, the deformation law of the simulated value is the same as the theoretical value, and the simulated value is slightly larger than the theoretical value. Underlying tunnel only just exists vertical deformation at the direct center of the foundation pit, and the maximum deformation is about 3.054 mm under the dewatering well of the jumping layer and W3. With the dewatering of jumping layer and the third excavation mode (W3), underlying tunnel only just exists lateral displacement at the position where is the retaining structure, and the maximum displacement is 1.606 mm.


2013 ◽  
Vol 443 ◽  
pp. 214-217
Author(s):  
Zhen Xi Yu

With the scale development of our high-rise buildings, together with the development and enhancing of monitoring technology of deep foundation pit supporting construction. Control accuracy is the main part for monitoring technical process in deep foundation pit supporting construction, the requirement of monitoring is higher and higher than before, relevant monitoring method, frock and tools, earthwork type of shipping and downriver way in engineering construction will develop in revolutionary way. In view of above mentioned, this paper try to do researching on monitoring technical process in deep foundation pit supporting construction in our country, hope to supply reference for counterparts.


2011 ◽  
Vol 243-249 ◽  
pp. 2338-2344
Author(s):  
Qing Yuan Li ◽  
Yang Wang

Taking deep excavation engineering in North Region of Senlin Park Station of Beijing Olympic Subway branch as engineering background, deformation law of enclosure structure of deep excavation are studied by the in-situ monitoring means .It shows that the maximum horizontal displacement of retaining pile is closely related with excavation depth and time. When the deep foundation pit is excavated to a certain depth, and steel brace hasn’t been erected, horizontal displacement of the pile tops is maximum. The location of the maximum horizontal displacement shifts down with foundation pit excavation and steel brace erection. With steel brace application, steel axis force decrease, so steel brace can effectively control horizontal displacements of retaining pile and internal force of steel in the pile. In addition, temperature has a certain effect to axis force of steel brace.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yuan Mei ◽  
Dongbo Zhou ◽  
Xueyan Wang ◽  
Liangjie Zhao ◽  
Jinxin Shen ◽  
...  

So far, there have been a large number of diaphragm walls in the Yangtze River Delta as engineering examples of deep foundation pit maintenance structures in subway stations, but there is a lack of systematic research and summary on the deformation characteristics of ground connecting walls. This study aimed to clarify the deformation law of the diaphragm wall during the excavation of a deep foundation pit in a soft soil region. Based on the monitoring data of the diaphragm wall of the deep foundation pit of the Hangzhou metro station, the monitoring data of the deep foundation pits of 15 subway stations in Shanghai and Ningbo cities around Hangzhou were considered. Grouping and classification methods were used to analyze the similarities and differences in the deformation characteristics of the diaphragm wall in the three regions. The results indicate the following: the maximum lateral deformation of the diaphragm wall in Hangzhou increases linearly with the relative depth of the maximum lateral deformation. The maximum lateral deformation of the foundation pit in Hangzhou is 0.072% H∼0.459% H, with a mean of 0.173% H. The wall deformation in Hangzhou varies significantly with the depth of the foundation pit, but the influence of the depth of the foundation pit on the wall deformation is considerably less than that in Shanghai and Ningbo. The corresponding position of the maximum lateral deformation in the excavation depth increases linearly with the excavation depth of the foundation pit, and the corresponding position of the lateral deformation of the diaphragm wall in Shanghai is more affected by the excavation depth of the foundation pit. The lateral deformation of the diaphragm wall increases rapidly in the range of 0 H–0.5 H, and the maximum lateral deformation occurs at 0.5 H–1.1 H.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Wenhan Fan ◽  
Jianliang Zhou ◽  
Jianming Zhou ◽  
Dandan Liu ◽  
Wenjing Shen ◽  
...  

With the huge demand for building underground spaces, deep foundation pits are becoming more and more common in underground construction. Due to the serious effects associated with accidents that occur in deep foundation pits, it is very important for underground construction safety management to be proactive, targeted, and effective. This research develops a conceptual framework adopting BIM and IoT to aid the identification and evaluation of hazards in deep foundation pit construction sites using an automated early warning system. Based on the accident analysis, the system framework of Safety Management System of Deep Foundation Pits (SMSoDFP) is proposed; it includes a function requirement, system modules, and information needs. Further, the implementation principles are studied; they cover hazardous areas, namely, visualization, personnel position monitoring, structural deformation monitoring, and automatic warning. Finally, a case study is used to demonstrate the effectiveness and feasibility of the system proposed. This research provides suggestions for on-site management and information integration of deep foundation pits, with a view to improving the safety management efficiency of construction sites and reducing accidents.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Huifen Liu ◽  
Kezeng Li ◽  
Jianqiang Wang ◽  
Chunxiang Cheng

Based on the deep foundation pit project of Laoguancun station of Wuhan rail transit line 16 and according to the engineering characteristics of the construction conditions and the site surrounding the environment, the method of combining field monitoring and finite element numerical simulation is adopted to analyze the law of stress and deformation of the deep foundation pit during excavation and support construction; it includes the horizontal displacement of the underground diaphragm wall, supporting axial force, and the ground surface settlement, which can be compared with measured data. Finally, some suggestions for monitoring and construction of the deep foundation pit in the subway station have been put forward and have certain reference value and practical guiding significance for the design and construction of similar engineering projects. The deformation monitoring of the retaining structure at the middle of the long side of the foundation pit should be strengthened during the construction process.


Sign in / Sign up

Export Citation Format

Share Document