Microstructural Evolution during Spheroidization Annealing of Eutectoid Steel: Effect of Interlamellar Spacing and Cold Working

2010 ◽  
Vol 89-91 ◽  
pp. 79-84 ◽  
Author(s):  
Matteo Caruso ◽  
Stéphane Godet

Eutectoid steels present a wide range of interesting mechanical properties (high strength, wear resistance, ductility and toughness) and could be a cheaper alternative to high strength low-alloyed steels (HSLA) in applications where weldability is not a critical requirement. The mechanical properties of pearlite are mainly dictated by the interlamellar spacing and the spheroidization of cementite. In this work, the spheroidization kinetics during annealing of a fully pearlitic steel produced in an electric arc furnace (EAF) is investigated. More specifically, the influence of a prior cold deformation and of the interlamellar spacing is studied using image analysis and hardness tests. It is shown that spheroidization is faster in fine pearlite than in coarse pearlite. Prior cold deformation strongly accelerates the spheroidization kinetics in fine and coarse pearlite. The tensile properties corresponding to different pearlite microstructure were measured and are compared to the hardness evolution during annealing.

2017 ◽  
Vol 898 ◽  
pp. 461-466
Author(s):  
Cheng Zhuang Lu ◽  
Jing Yuan Li ◽  
Dong Yan Yang ◽  
Yu Lai Chen

Co-Ni alloys in which Co, Ni, Cr and Mo are principal elements, exhibit an impressive combination of high strength, high toughness, and excellent corrosion resistance. In this study, the effects of cold-rolled combined with the heat-treatment ranged from 673 to 973 K from 1hour to 10 hours on the mechanical properties and microstructures of Co-Ni alloys were investigated systematically. The relations between the aging temperature and mechanical properties were concluded. The initial ultimate tensile strength of 790 MPa increased to 1808 MPa by cold rolled 80 pct. After aging the cold-rolled alloy (80 pct ) at temperature 773K for 4hours, the ultimate tensile strength and the hardness reached to 2220MPa and 759(HV), respectively. It is found that the material was hardened by the cold working and aging which provided the second hardening. However, TEM observations and X-ray diffractions suggested that no structural change could be found. The cold deformation introduced platelets of a few atomic layers in thickness less than 100 nm, which were identified as stacking faults. A high density of nanoplatelets and dislocations, piled up in the vicinity of twin plate strengthened materials. The aging treatment provided the second major source of strengthening after cold-working (and only after cold-working) by the formation of secondary twins. The ultimate strength resulted from that the intersection of deformation twins and secondary twins blocking the dislocation movement.


Author(s):  
A. G. Korchunov ◽  
E. M. Medvedeva ◽  
E. M. Golubchik

The modern construction industry widely uses reinforced concrete structures, where high-strength prestressing strands are used. Key parameters determining strength and relaxation resistance are a steel microstructure and internal stresses. The aim of the work was a computer research of a stage-by-stage formation of internal stresses during production of prestressing strands of structure 1х7(1+6), 12.5 mm diameter, 1770 MPa strength grade, made of pearlitic steel, as well as study of various modes of mechanical and thermal treatment (MTT) influence on their distribution. To study the effect of every strand manufacturing operation on internal stresses of its wires, the authors developed three models: stranding and reducing a 7-wire strand; straightening of a laid strand, stranding and MTT of a 7-wire strand. It was shown that absolute values of residual stresses and their distribution in a wire used for strands of a specified structure significantly influence performance properties of strands. The use of MTT makes it possible to control in a wide range a redistribution of residual stresses in steel resulting from drawing and strand laying processes. It was established that during drawing of up to 80% degree, compressive stresses of 1100-1200 MPa degree are generated in the central layers of wire. The residual stresses on the wire surface accounted for 450-500 MPa and were tension in nature. The tension within a range of 70 kN to 82 kN combined with a temperature range of 360-380°С contributes to a two-fold decrease in residual stresses both in the central and surface layers of wire. When increasing temperature up to 400°С and maintaining the tension, it is possible to achieve maximum balance of residual stresses. Stranding stresses, whose high values entail failure of lay length and geometry of the studied strand may be fully eliminated only at tension of 82 kN and temperature of 400°С. Otherwise, stranding stresses result in opening of strands.


Alloy Digest ◽  
1994 ◽  
Vol 43 (11) ◽  

Abstract CARLSON ALLOYS C600 AND C600 ESR have excellent mechanical properties from sub-zero to elevated temperatures with excellent resistance to oxidation at high temperatures. It is a solid-solution alloy that can be hardened only by cold working. High strength at temperature is combined with good workability. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: Ni-470. Producer or source: G.O. Carlson Inc.


Alloy Digest ◽  
1978 ◽  
Vol 27 (7) ◽  

Abstract ALMAR 300 Alloy is a vacuum-melted ultra-high-strength steel. The annealed structure of this alloy is essentially a carbon-free, iron-nickel martensite (a relatively soft Rockwell C 28) that can be strengthened by cold working and elevated-temperature (900-950 F) age hardening to useful yield strengths as high as 300,000 psi. The unique properties of this alloy make it suitable for a wide range of section sizes. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-349. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1997 ◽  
Vol 46 (10) ◽  

Abstract Allegheny Stainless Type 205 is a chromium-manganese nitrogen austenitic high strength stainless steel that maintains its low magnetic permeability even after large amounts of cold working. Annealed Type 205 has higher mechanical properties than any of the conventional austenitic steels-and for any given strength level, the ductility of Type 205 is comparable to that of Type 301. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SS-640. Producer or source: Allegheny Ludlum Corporation. Originally published March 1996, revised October 1997.


2007 ◽  
Vol 344 ◽  
pp. 143-150 ◽  
Author(s):  
Gianluca Buffa ◽  
Livan Fratini ◽  
Marion Merklein ◽  
Detlev Staud

Tight competition characterizing automotive industries in the last decades has determined a strong research effort aimed to improve utilized processes and materials in sheet stamping. As far as the latter are regarded light weight alloys, high strength steels and tailored blanks have been increasingly utilized with the aim to reduce parts weight and fuel consumptions. In the paper the mechanical properties and formability of tailored welded blanks made of a precipitation hardenable aluminum alloy but with different sheet thicknesses, have been investigated: both laser welding and friction stir welding have been developed to obtain the tailored blanks. For both welding operations a wide range of the thickness ratios has been considered. The formability of the obtained blanks has been characterized through tensile tests and cup deep drawing tests, in order to show the formability in dependency of the stress condition; what is more mechanical and metallurgical investigations have been made on the welded joints.


2017 ◽  
Vol 62 (1) ◽  
pp. 223-230 ◽  
Author(s):  
A. Szkliniarz

Abstract This paper presents the possibilities of forming the microstructure as well as mechanical properties and electrical conductivity of Cu-3Ti alloy (wt.%) in thermal and thermomechanical processes that are a combination of homogenising treatment, hot and cold working, solution treatment and ageing. Phase composition of the alloy following various stages of processing it into the specified semi-finished product was being determined too. It was demonstrated that the application of cold plastic deformation between solution treatment and ageing could significantly enhance the effect of hardening of the Cu-3Ti alloy without deteriorating its electrical conductivity. It was found that for the investigated alloy the selection of appropriate conditions for homogenising treatment, hot and cold deformation as well as solution treatment and ageing enables to obtain the properties comparable to those of beryllium bronzes.


2018 ◽  
Vol 157 ◽  
pp. 02052 ◽  
Author(s):  
Krzysztof Talaśka ◽  
Dominik Wojtkowiak

Due to the wide range of application for belt conveyors, engineers look for many different combinations of mechanical properties of conveyor and transmission belts. It can be made by creating multilayer or fibre reinforced composite materials from base thermoplastic or thermosetting polymers. In order to gain high strength with proper elasticity and friction coefficient, the core of the composite conveyor belt is made of polyamide film core, which can be combined with various types of polymer fabrics, films or even rubbers. In this paper authors show the complex model of multilayer composite belt with the polyamide core, which can be used in simulation analyses. The following model was derived based on the experimental research, which consisted of tensile, compression and shearing tests. In order to achieve the most accurate model, proper simulations in ABAQUS were made and then the results were compared with empirical mechanical characteristics of a conveyor belt. The main goal of this research is to fully describe the perforation process of conveyor and transmission belts for vacuum belt conveyors. The following model will help to develop design briefs for machines used for mechanical perforation.


Alloy Digest ◽  
2021 ◽  
Vol 70 (9) ◽  

Abstract Raffmetal EN AB-Al Si7Mg0.3 (EN AB-42100) is a heat-treatable, Al-Si-Mg casting alloy in ingot form for remelting. It is used extensively for producing sand, permanent mold and investment castings for applications requiring a combination of excellent casting characteristics, high strength with good elongation, and good corrosion resistance. This alloy can be produced to a wide range of mechanical properties by making small adjustments to the magnesium content and/or heat treatment. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-480. Producer or source: Raffmetal S.p.A.


2013 ◽  
Vol 747-748 ◽  
pp. 855-859
Author(s):  
Xiao Xue Chen ◽  
Shun Guo ◽  
Xin Qing Zhao

A series of Ti-Mo-Sn alloys with different Mo contents from 7% to 15% (wt. %) were prepared, and the effects of Mo content and thermo-mechanical treatment on their microstructural evolution and mechanical behavior were investigated. The experimental results indicated that the β to α martensite transformation can be effectively suppressed with increasing Mo content. After cold rolling treatment, superior mechanical properties and low modulus were achieved in Ti-8Mo-4Sn alloy, with tensile strength of 1108MPa, yield strength of 1003MPa and low Youngs modulus of 53GPa. The influence of severe cold deformation on the macrostructure and mechanical properties was discussed based on the characterization of X-Ray diffraction and mechanical tests. It was demonstrated that the cold rolling induced fine α martensite and high density dislocations lead to the high strength of the Ti-Mo-Sn alloys. The fine α martensite as well as the β matrix with low stability guarantee low Youngs modulus.


Sign in / Sign up

Export Citation Format

Share Document