Effect of Strontium on Microstructure and Mechanical Properties of Semi-Solid A356 Al Alloy

2014 ◽  
Vol 893 ◽  
pp. 353-356
Author(s):  
Atchara Sangchan ◽  
Thawatchai Plookphol ◽  
Jessada Wannasin ◽  
Sirikul Wisutmethangoon

Effect of strontium (Sr) addition on the microstructure and the mechanical properties of semi-solid A356 aluminum alloy produced by GISS process were investigated in this study. Strontium addition resulted in both grain refinement and modification of eutectic Si. The maximum average ultimate tensile strength and elongation of 291.06 MPa and 17.31%, respectively, were obtained from the T6 heat-treated specimen containing 0.08wt%Sr. The excessive addition of strontium (0.2wt%Sr), however, seemed to deteriorate the mechanical properties of the alloy as a result of the Al2Si2Sr particle formation.

2006 ◽  
Vol 116-117 ◽  
pp. 453-456 ◽  
Author(s):  
Yong Lin Kang ◽  
Yue Xu ◽  
Zhao Hui Wang

In this paper, with a newly self-developed rotating barrel rheomoulding machine(RBRM), microstructures and mechanical properties of rheo-die casting A356 alloy were studied. In order to clearly show the characteristic of rheo-die casting, liquid die casting and semi-solid casting were done too. The experimental results showed that microstructures of rheo-die casting were composed of solid grains, which were finer and rounder, and had fewer pores. In the three technologies, integrated mechanical properties of semi-solid rheo-die casting were the best.


2014 ◽  
Vol 496-500 ◽  
pp. 336-339
Author(s):  
Nisachon Khunbanterng ◽  
Sirikul Wisutmethangoon ◽  
Thawatchai Plookphol ◽  
Jessada Wannasin

Semi-solid 2024 Al alloys with strontium (Sr) addition of 0.15 wt% and 0.3 wt% were prepared by Gas Induced Semi-Solid (GISS) process. Effect of Sr addition on the microstructure and mechanical properties of the semi-solid 2024 alloy was investigated. It was found that the tensile strength and % elongation of the T6 heat treated alloy with the Sr addition were higher than those without Sr addition owing to the reduction of Mg2Si phase formation. The semi-solid 2024 Al alloy with 0.15%Sr addition obtained the average highest tensile strength of 382 MPa and elongation of 6.45%.


2016 ◽  
Vol 877 ◽  
pp. 39-44
Author(s):  
Si Min Lei ◽  
Li Gao ◽  
Yohei Harada ◽  
Shinji Kumai

The present work deals with the relationship between microstructure and mechanical properties of A356 aluminum alloy which was produced via thixocasting process under different casting conditions. Feedstock billets were heated to a target temperature to obtain a semi-solid slurry with the required solid fraction. Some billets were heated to a fully-melted condition. In order to obtain fine and spheroidized Al grains, some billets for the partially melting were compressed axially by 33% at a room temperature before heating. The completely-melted and partially-melted slurries were die-cast by using a die-cast machine, and hour glass-shaped rod-type tensile specimens and small-size plate-type tensile specimens were obtained. Small cubic specimens were also collected from the die-cast products for microstructural evaluation. They were polished, and etched by Weck’s reagent. The partially-melted specimen which was compressed before heating shows the spherical Al grains. But the grain of the strain-free partially-melted specimen exhibited complicated morphology. The fully-melted specimen shows the fine and dendrite structure.


2014 ◽  
Vol 788 ◽  
pp. 215-222
Author(s):  
Yong Peng ◽  
Shun Cheng Wang ◽  
Hai Tao Zhou ◽  
Kai Hong Zheng ◽  
He Xing Chen

The effect of applied forging pressure on microstructure and mechanical properties of 6061 aluminum alloy was examined. The results showed that the ultimate tensile strength, elongation and hardness of the alloy after heat-treated treatment increase with the applied forging pressure, and the corresponding highest values, 365MPa, 11.52% and 146.53HV, were obtained at the applied forging pressure of 120MPa. Compared to casting condition without forging pressure, the ultimate tensile strength, elongation and hardness can be increased by 22.8%, 98.2% and 48.7%, respectively. The defects such as the shrinkage pores and cracks were absent in the microstructure due to the applied forging pressure. The SEM observation indicated that the fracture mode of 6061 aluminum alloy is more ductile at higher applied forging pressure.


2014 ◽  
Vol 685 ◽  
pp. 7-10 ◽  
Author(s):  
Zhong Zhao ◽  
Zi Tian Fan

In order to improve the mechanical properties of A356 aluminum alloy in lost form casting (LFC), vibration and pressure were applied to solidification process of LFC, and the microstructures and the mechanical properties of the castings were compared with that of the castings in LFC without vibration and pressure. The results indicated that the grains of A356 alloy with vibration pressure in LFC became finer, and the dendrites decreased, and the equiaxed grains increased. At the same time, the porosities of the castings were significantly reduced. Compared with conventional LFC, the tensile strength, elongation, and hardness of A356 alloy with vibration pressure in LFC were all increased by 10% or above.


2010 ◽  
Vol 97-101 ◽  
pp. 306-310 ◽  
Author(s):  
Xiang Lin Yin ◽  
Yi Tao Yang ◽  
Yu Peng Shao ◽  
Guang Jie Shao

The non-dendritic of A356 aluminum alloy billet was reheated to meet the requirements of the semi-solid microstructure by three different kinds of power, achieving the same final temperature of 863K. Subsequently, under the same conditions of die-casting (thixoforming), the microstructure was observed, surface hardness and tensile properties were measured. Afterwards, quantitative analysis was made for the microstructure of the reheated semi-solid of billet and the thixoforming parts. The results showed that the larger induction reheating power of the billet, the smaller the grain size of its microstructure and the higher surface hardness and the better mechanical properties of its thixoforming sample. Finally, through studying on the relationship between the microstructure of the semi-solid billet of A356 aluminum alloy and the mechanical properties of the thixoforming sample, we primarily achieved the reverse design of microstructure.


2010 ◽  
Vol 89-91 ◽  
pp. 347-352 ◽  
Author(s):  
Ze Qin Liang ◽  
Da Tong Zhang ◽  
Cheng Qiu ◽  
Wen Zhang ◽  
Yuan Yuan Li

The high mechanical properties in 7xxx aluminum alloy are obtained by controlling the precipitation hardening microstructure. In this work, the relationship between the microstructures and mechanical properties of 7A04 (Al-Zn-Mg-Cu) aluminum alloy during isothermal aging at 140 oC after different quenching rates has been studied in order to find its useful hardening conditions. The as-extruded samples were solution heat treated at 480 oC and cooled in air, 70 oC water, 40 oC water and 0 oC ice water. Tensile test were performed and the ultimate tensile strength and percentage of elongation were obtained. The difference in the amount of precipitates is known by DSC and the morphology of the precipitates is characterized by TEM. The results indicate that the artificial age hardening response is strongly dependent on the quenching rate. Lower quenching rate results in lower tensile strength but higher percentage of elongation in the peak age condition, and this corresponds to the difference in the size and number density of the precipitates. It is concluded that the highest ultimate tensile strength is obtained in the fastest quenching rate in 0 oC ice water (up to 870Ks-1) while stable and high percentage of elongation is achieved in the intermediate quenching rate (about 226 Ks-1).


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 647 ◽  
Author(s):  
Bingrong Zhang ◽  
Lingkun Zhang ◽  
Zhiming Wang ◽  
Anjiang Gao

In order to obtain high-strength and high-ductility Al–Si–Cu–Mg alloys, the present research is focused on optimizing the composition of soluble phases, the structure and morphology of insoluble phases, and artificial ageing processes. The results show that the best matches, 0.4 wt% Mg and 1.2 wt% Cu in the Al–9Si alloy, avoided the toxic effect of the blocky Al2Cu on the mechanical properties of the alloy. The addition of 0.6 wt% Zn modified the morphology of eutectic Si from coarse particles to fine fibrous particles and the texture of Fe-rich phases from acicular β-Fe to blocky π-Fe in the Al–9Si–1.2Cu–0.4Mg-based alloy. With the optimization of the heat treatment parameters, the spherical eutectic Si and the fully fused β-Fe dramatically improved the ultimate tensile strength and elongation to fracture. Compared with the Al–9Si–1.2Cu–0.4Mg-based alloy, the 0.6 wt% Zn modified alloy not only increased the ultimate tensile strength and elongation to fracture of peak ageing but also reduced the time of peak ageing. The following improved combination of higher tensile strength and higher elongation was achieved for 0.6 wt% Zn modified alloy by double-stage ageing: 100 °C × 3 h + 180 °C × 7 h, with mechanical properties of ultimate tensile strength (UTS) of ~371 MPa, yield strength (YS) of ~291 MPa, and elongation to fracture (E%) of ~5.6%.


Sign in / Sign up

Export Citation Format

Share Document