Effect of Hot Processing Parameters on the Deformation Behavior of Superalloy GH4169

2014 ◽  
Vol 893 ◽  
pp. 625-629
Author(s):  
Xue Min Zhang ◽  
Fu Wei Kang ◽  
Jun Ling Zhao

Superalloy GH4169 as one of high temperature structural material is widely used in aviation industry. Isothermal compression of superalloy GH4169 has been conducted on Gleebe-1500D hot simulation at the deformation temperatures ranging from 950°C to 1100°C,the strain rates ranging from 0.01s-1to 10s-1, and the height reduction of 50%. Effect of processing parameters ,i.e. deformation temperature, strain rate and strain, on the hot deformation behaviors of superalloy GH4169 was studied. The research shows that the fine dynamic recystallization grains could be obtained at the condition of high deformation temperature and low strain rate. Constitutive equation of superalloy GH4169 was established by experimental data. Error analysis showed that calculated stress values by the established constitutive equation were coincident with experimental data well, and it provided the theory basis to optimize forging processing of superalloy GH4169.

2011 ◽  
Vol 418-420 ◽  
pp. 1274-1278
Author(s):  
Shu Zhen Shang ◽  
Xiao Ling Tang ◽  
Gui Min Lu ◽  
Wan Ning Zhang ◽  
Jiao Jiao Wang

Effects of deformation temperature and strain rate on deformation behavior of semi-solid ZL201 alloy were investigated on Gleeble3800 thermal-mechanical simulator. On basis of the experimental data of semi-solid ZL201, a model of was established to describe the relationship between the processing parameters and flow stress, which showed that the experimental results and calculation ones fitted well. The suitable conditions of this model for semi-solid ZL201 alloy were that the temperature range was 547°C-649°C and that of the strain rate was 0.1 s-1-5s-1.


2015 ◽  
Vol 817 ◽  
pp. 367-373
Author(s):  
Xiao Ya Yang ◽  
Xi Tao Wang ◽  
Gen Qi Wang

The hot tensile deformation behaviors of 316LN austenitic stainless steel (ASS) were studied on a Gleeble-1500D thermal simulator under the deformation temperature of 1173-1473 K and strain rate of 0.01-1 s-1. The effects of deformation temperature and strain rate on hot deformation behaviors were analyzed. Based on experimental data, the constitutive equation was established, and the predicted peak stresses by the developed model agree well with the experimental data. Microstructure near the fracture and the percentage reduction of area were studied, and the results showed that the microstructural evolution has great influences on the percentage reduction of area. Under the deformation temperature of 1473K with the strain rate of 1s-1, the grain was the finest and most homogenous, and in this deformation condition the percentage reduction of area was the highest of 79.8%.


2016 ◽  
Vol 849 ◽  
pp. 811-818
Author(s):  
Biao Guo ◽  
Chang Chun Ge ◽  
Yi Xu ◽  
Qiu Yan Lu ◽  
Sui Cai Zhang

The hot deformation and densification behaviors of sintered P/F-10C50 steel were investigated by hot compression tests on Gleeble-1500 thermal mechanical simulator at the temperature ranging from 900 °C to 1000 °C and the strain rate ranging from 0.1 s-1 to 10 s-1. The flow and densification characteristics of the tested specimens at different deformation temperatures and strain rates were studied. The flow stress of the sintered steel persistently increases until the end of the test as the result of matrix and geometric work hardening. The higher deformation temperature and strain rate are conductive to the healing of the pores and promote the densification of the sintered steel, while the higher deformation temperature and lower strain rate impede the densification. The constitutive equation of the sintered steel is established by the means of stepwise regression. The flow stresses predicted by the established constitutive equation are in good agreement with the experimental values, and the correlation coefficient (R) and the average absolute relative error (AARE) are 0.9931 and 3.52%, respectively. These results demonstrate the hot deformation behaviors of the sintered P/F-10C50 steel are excellently predicted by the established constitutive equation.


2019 ◽  
Vol 38 (2019) ◽  
pp. 436-443 ◽  
Author(s):  
Ying Zhou ◽  
Xiao-Min Chen ◽  
Shengfeng Qin

AbstractThe hot deformation behaviors of an aged Inconel 718 superalloy are investigated by isothermal compression experiments at four strain rates and five deformation temperatures on a Gleeble-3500 thermo-mechanical simulator. The experimental results show that the true stresses are obviously affected by strain rate and deformation temperature. The true stress increases rapidly at the beginning of hot compressive deformation, which ascribes to the intense work hardening. The true stresses at high deformation temperatures are lower than those at lower deformation temperatures. The dynamic softening induced by DRX is weak at a relatively low deformation temperature. A strain-compensated Arrhenius-type constitutive equation linked with true stress, strain rate and deformation temperature is developed for the studied superalloy. The material constants (\alpha , n, Q and A) in the developed model are expressed as the functions of true strain. The flow stresses calculated by the developed constitutive equation are nicely consistent with the experimental ones, which confirms that the developed constitutive equation can accurately describe the hot deformation behaviors of the studied superalloy.


2021 ◽  
Vol 1035 ◽  
pp. 189-197
Author(s):  
Bao Ying Li ◽  
Bao Hong Zhu

The hot deformation behavior of spray-formed AlSn20Cu alloy during hot compression deformation was studied, and the constitutive equation of AlSn20Cu alloy was established. The samples of spray-formed AlSn20Cu alloy were compressed on Gleeble-3500 thermal simulation test machine. The error of the true stress caused by adiabatic heating effect in the experiment was corrected. The constitutive equation of spray-formed AlSn20Cu alloy could be represented by Zener-Hollomon parameter in a hyperbolic sine function. The results showed that the deformation temperatures and strain rates had a notable effect on the true stress of the alloy. At the identical deformation temperature, the true stress increased with the increase of strain rate. When the strain rate was constant, the stress decreased with the increase of deformation temperature. After hot compression deformation, the tin phase was elongated along the direction perpendicular to the compression axis with short strips and blocks. With the increase of deformation temperature and the decrease of strain rate, Sn phase distribution became more homogeneous.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 312 ◽  
Author(s):  
Yuhang Guo ◽  
Yaodong Xuanyuan ◽  
Xuannam Ly ◽  
Sen Yang

In this work, the Mg-3Sn-2Al-1Zn (TAZ321, wt. %) alloy with excellent high temperature resistance was compressed using a Gleeble-3500 thermo-mechanical simulator at a wide temperature and the strain rate range. The kinetics analyses showed that the dominant deformation mechanism was likely caused by the cross slipping of dislocations. A constitutive equation which expressed the relationship between the flow stress, deformation temperature, and strain rate was established, and the average activation energy Q was calculated to be 172.1 kJ/mol. In order to delineate the stability and instability working domains, as well as obtain the optimum hot working parameters of the alloy, the hot processing maps in accordance with Prassad’s criterion are constructed at the true strain of 0.2, 0.4, 0.6, and 0.8, respectively. Based on the hot processing map and microstructure observation, the optimum hot working parameter was determined to be 350 °C/1 s−1. The continuous fine dynamic recrystallization (CDRX) grains occurred in the optimum deformation zone. The predicted instability domains was identified as T = 200–300 °C, ε ˙ = 10−2–1 s−1, which corresponded to the microstructure of deformation twinning and micro cracks at the intersection of grain boundaries.


2016 ◽  
Vol 849 ◽  
pp. 430-435 ◽  
Author(s):  
Shi Ming Hao ◽  
Jing Pei Xie ◽  
Li Ben Li ◽  
Ai Qin Wang ◽  
Wen Yan Wang ◽  
...  

In order to explore the compressive properties of aluminium matrix composite reinforced with middle content SiC particles, hot compression behavior of 30%SiCp/2024A1 composite was investigated using Gleeble-1500 system at a temperatures range from 350 to 500°C and strain rates from 0.01 to 10 s−1. The associated structural changes were studied by OM, SEM and TEM observations. The results show that the true stress–true strain curves exhibited a peak stress at a small strain (<0.1), after which the flow stresses decreased monotonically until high strains, showing a dynamic flow softening. The stress level decreased with increasing deformation temperature and decreasing strain rate, indicating that the composite is a positive strain rate sensitive material. And therefore there will be a enough time for dynamic recrystallization to complete nucleation and growth at low strain rate and high deformation temperatures.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1602
Author(s):  
Sheng Xu ◽  
Xuedao Shu ◽  
Shuxin Li ◽  
Ji Chen

The warm deformation behavior of 20CrMoA steel at the temperature of 873–1123 K and the strain rate of 0.01−10 s−1 was investigated to obtain its processing property and optimum processing parameters. The true stress-true strain curves showed that flow stress reaches the peak rapidly, followed by slow decrease till reaching a steady state. This suggests a flow softening of dynamic recovery. The stress dropped with increasing deformation temperature and decreasing strain rate. The reduction became more distinct at lower temperature and higher strain rate due to flow softening caused by deformation heat. In the temperature range of 873–973 K, the deformation of 20CrMoA steel was more sensitive to temperature, and the average decline rate of steady stress was 6.9 times larger than that in the temperature range of 1023–1123 K. After modifying the stress curves, a constitutive model was developed for different deformation temperature ranges based on modified curves. The model was in good agreement with the experimental results.


2018 ◽  
Vol 37 (6) ◽  
pp. 551-562 ◽  
Author(s):  
Yu-ting Zhou ◽  
Yu-feng Xia ◽  
Lai Jiang ◽  
Shuai Long ◽  
Dong Yang

AbstractA series of compression tests were performed on Ti-6Al-4V-0.1Ru titanium alloy in nine temperatures between 750 and 1150 °C and a strain rate range of 0.01 to 10s−1. The hot deformation behaviors of Ti-6Al-4V-0.1Ru showed highly non-linear intrinsic relationships with temperature, strain and strain rate. The flow curves exhibited different softening mechanisms, dynamic recrystallization (DRX) and dynamic recovery (DRV). In this study, the rheological behaviors of Ti-6Al-4V-0.1Ru were modeled using a special hybrid prediction model, where genetic algorithm (GA) was implemented to do a back-propagation neural network (BPNN) weights optimization, namely GA-BPNN. Subsequently, the predicted results were compared with experimental values and GA-BPNN model showed the ability to predict the flow behaviors of Ti-6Al-4V-0.1Ru with superior accuracy. Then a 3-D continuous interaction space was constructed to visually reveal the successive relationships among processing parameters. Finally, the predicted data were applied to process simulation and accuracy results were achieved.


2007 ◽  
Vol 539-543 ◽  
pp. 3401-3406 ◽  
Author(s):  
Talal Al-Samman ◽  
Günter Gottstein

Texture evolution and microstructure development of hot extruded pure magnesium and the magnesium alloy AZ31 deformed by plane strain deformation at select temperatures and strain rates were investigated using X-ray techniques, electron back scattered diffraction (EBSD) and optical microscopy. At a deformation temperature of 200 °C both materials showed a heterogeneous microstructure consisting of highly deformed zones appearing as huge grains or bands and of very small (~ 3 μm) grains. High temperature deformation (400 °C) gave rise to completely different microstructures. Changing of deformation conditions, i.e. the temperature and strain rate resulted in different final textures. At high deformation temperature and low strain rate the formation of a basal texture was suppressed.


Sign in / Sign up

Export Citation Format

Share Document