Synthesis of an In Situ Aluminum Matrix Composite Fabricated by Al-Cr2O3 System

2014 ◽  
Vol 905 ◽  
pp. 119-122
Author(s):  
He Guo Zhu ◽  
Hao Sun ◽  
Bo Hua ◽  
Guan Hong Guo ◽  
Jie Wen Huang ◽  
...  

In situ aluminum matrix composites were fabricated through exothermic dispersive (XD) reaction from a powder mixture of Al and Cr2O3. The reaction mechanism was investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS) and differential scanning calorimetry (DSC) analysis. When the temperature increases to around 1050K, Al can react with Cr2O3to form the reinforcments Al2O3particles and CrAl4blocks. With the increase of heating rate, DSC analysis shows that the reaction peak shifts to a higher temperature and the corresponding ignition temperature also increases. Based on DSC curves with different heating rates, the activation energy can be calculated and its value is 191.8 kJ/mol.

2018 ◽  
Vol 238 ◽  
pp. 02006
Author(s):  
Chengyan Zhu ◽  
Jie Jiang ◽  
Heguo Zhu

Iron matrix composites reinforced with Al2O3 particles were fabricated in situ through exothermic dispersive (XD) reaction from a powder mix of pure elements Fe, Al and Fe2O3. The fabrication and reaction mechanisms were investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS) and differential scanning calorimetry (DSC) analysis. The reaction between Al and Fe2O3 was found to occur in three steps. Their activation energies are 203.8 kJ/mol, 1100.9 kJ/mol and 380 kJ/mol, respectively. DSC analysis shows that the reaction peak shifts to a higher temperature with an increase in the heating rate. When the heating rate is 10 K/min, the rates of the three reactions exhibit a similar trend, i.e., the reaction rate is very slow at the start, and then it increases rapidly, finally it becomes slow again. Their reaction times are 456, 672 and 650 s, respectively.


2012 ◽  
Vol 567 ◽  
pp. 15-20 ◽  
Author(s):  
Ling Cheng ◽  
De Gui Zhu ◽  
Ying Gao ◽  
Wei Li ◽  
Bo Wang

Alumina reinforced aluminum matrix composites (Al-5wt.%Si-Al2O3) fabricated by powder metallurgy through hot isotactic pressing were sintered in different processes, i.e. solid and liquid phase sintering. Optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscope (SEM), Energy Dispersive X-ray (EDX) techniques were used to characterize the sintered composites. The effects of solid phase and liquid phase sintering on density, microstructure, microhardness, compression and shear strength were investigated. It was found that in situ chemical reaction was completed in solid phase sintering, but the composites had lower microhardness, comprehension and shear strength due to low density and segregation of alumina and Si particles in microstructure. Segregation of reinforcement particles in solid phase sintering resulted from character of solid reaction and Si diffusion at high temperature over a long hold time.


2017 ◽  
Vol 52 (1) ◽  
pp. 123-134 ◽  
Author(s):  
Mohammad Senemar ◽  
Behzad Niroumand ◽  
Ali Maleki ◽  
Pradeep K Rohatgi

In this study, in situ aluminum matrix composites were synthesized through pyrolysis of high temperature vulcanization silicone in commercially pure aluminum melt. For this purpose, 1 to 4 wt% of high temperature vulcanization silicone was added to a vortex of molten aluminum at 750℃ and the resulting slurries were cast in steel dies. Microstructure, hardness, and tensile properties of the as-cast samples were examined at ambient and high temperatures. The results revealed the in situ formation and distribution of reinforcement particles in the matrix. Energy-dispersive X-ray analysis indicated that the formed reinforcement particles consisted of O and Si elements. This confirms the in situ reinforcement formation by pyrolysis of high temperature vulcanization silicone in the melt. The size of the in situ formed particles was mostly in the range of 200–2000 nm. It was shown that the composites synthesized by the addition of 4 wt% high temperature vulcanization had the highest mechanical properties both at ambient and high temperatures. Room temperature hardness, tensile strength, and yield strength of this sample were increased by about 50%, 23%, and 19% compared to the monolithic sample, respectively.


2015 ◽  
Vol 787 ◽  
pp. 583-587 ◽  
Author(s):  
V. Mohanavel ◽  
K. Rajan ◽  
K.R. Senthil Kumar

In the present study, an aluminum alloy AA6351 was reinforced with different percentages (1, 3 and 5 wt %) of TiB2 particles and they were successfully fabricated by in situ reaction of halide salts, potassium hexafluoro-titanate and potassium tetrafluoro-borate, with aluminium melt. Tensile strength, yield strength and hardness of the composite were investigated. In situ reaction between the inorganic salts K2TiF6 and KBF4 to molten aluminum leads to the formation of TiB2 particles. The prepared aluminum matrix composites were characterized using X-ray diffraction and scanning electron microscope. Scanning electron micrographs revealed a uniform dispersal of TiB2 particles in the aluminum matrix. The results obtained indicate that the hardness and tensile strength were increased with an increase in weight percentages of TiB2 contents.


Chemija ◽  
2020 ◽  
Vol 31 (3) ◽  
Author(s):  
Ehab AlShamaileh ◽  
Muayad Esaifan ◽  
Qusay Abu-Afifeh

The formation of metal oxide-based hydroxysodalite by alkali-activation of kaolinite is studied using X-ray diffraction (XRD) study and differential scanning calorimetry (DSC) analysis. Different metal oxides (CoO, MgO, FeO and SiO2) were used to form the metal oxide-based hydroxysodalite. The transformation from kaolinite into hydroxysodalite is confirmed by XRD. In the thermodynamic study, the maximum peak temperatures for DSC curves at various heating rates were used to determine the activation energy (Ea) of the hydroxysodalite formation. With magnesium oxide and cobalt oxide, the formation process was found to be exothermic while it was endothermic with iron oxide.


1999 ◽  
Vol 14 (11) ◽  
pp. 4246-4250
Author(s):  
H. J. Brinkman ◽  
J. Duszczyk ◽  
L. Katgerman

A method is described for the production of dense aluminum matrix composites from elemental powders in one processing step by reactive hot pressing (RHP). It encompasses both the exothermic conversion of reactants to composite product and the following hot compaction of the porous composite product. The RHP method described in this paper takes into account the gas evolution accompanying the exothermic process, ensures complete conversion of reactants, and avoids adverse reactions between aluminum matrix and graphite tooling material. In situ sample temperature measurements enable proper process control, in particular the timing of the full densification step of the hot reaction product.


Sign in / Sign up

Export Citation Format

Share Document