Optical and Electrical Properties of Modified Polythiophene with Tetrafluorobenzene Thin Film

2010 ◽  
Vol 93-94 ◽  
pp. 574-577
Author(s):  
M. Sittishoktram ◽  
Udom Asawapirom ◽  
Tanakorn Osotchan

Modified poly(3-hexylthiophene) (P3HT) with molecule of 1,4-dithienyl-2,3,5,6-tetrafluorobenzene in the main chain was developed as a new class of conjugated polymer with high stability. The structural and optical characteristics of modified polymer were investigated by x-ray diffraction (XRD) and optical absorption spectroscopy. By comparing to characteristic of P3HT, the XRD pattern of modified polymer showed the diffraction peak shifted from theta of 5.4o to 5.9o with decrease intensity. This indicates that the modified polymer chain has a reducing in structural coplanarity and crystallinity. Since the electrical property can be related to the morphology and structure of thin film, the electrical conduction of modified polymer was studied with the structure of ITO/modified P3HT/Al. The result of I-V characteristic measurement of modified polymer as a function of temperatures showed that the conductance decreased with decreasing temperature. The mobility of copolymer was also evaluated by using time of flight measurement and mobility value of 5x10-4 cm2/Vs was obtained at room temperature.

2015 ◽  
Vol 1107 ◽  
pp. 643-648
Author(s):  
Chew Ping Chia ◽  
Zulkarnain Zainal ◽  
Yusran Sulaiman ◽  
Sook Keng Chang

Tin seleno telluride thin film was deposited by pulse electrodeposition onto fluorine doped tin oxide coated glass from aqueous solution containing Sn-EDTA, Na2SeO3 and TeO2. The sample was deposited at a potential of-0.40 V vs Ag/AgCl with various duty cycle between 10% to 90% followed by annealing under nitrogen gas at 250°C for 30 minutes. The crystalline structure, morphology and photoresponse of the thin film was analyzed using X-ray diffraction (XRD), scanning electron microscopy and linear sweep photovoltammetry techniques. The XRD pattern shows polycrystalline cubic structure of SnSe0.4Te0.6 for film deposited at 50% duty cycle. The domain peak at 2θ=28.82o shows a high intensity and a better photoresponse due to the small crystalline size. The tin seleno telluride thin film reflects the loose short rod type aggregates at 10%-50% duty cycle and dendritic structure was formed at deposition of 75% and above. The deposited tin seleno telluride is a p-type semicoductor and the band gap was found to be 1.60 eV with direct transition.


Molekul ◽  
2008 ◽  
Vol 3 (1) ◽  
pp. 48
Author(s):  
Bilalodin Bilalodin

The growth of PbTiO3 ferroelectric thin films have successfully done. Thin films were made from bulk (powder) PbTiO3 dissolved in methanol solution. The condensation was mixed during 1 hour to get homogeneous condensation. Thin films were grown above corning substrates by spin coating method. Optimation was done by various of annealing temperature. The physical properties of thin films were characterized by Energi Dispersive X-Ray Spectroscopy (EDS), X-Ray Diffraction (XRD), Scanning and Electron Microscopy (SEM). EDS measurement showed that the stoichiometry composition ratio of Pb/Ti is 1/1.26 at annealing temperature 600oC and 1/1.29 at annealing temperature 700oC. The result of XRD pattern showed that crystal structure of PbTiO3 thin films are tetragonal. The calculated lattice parameters ontained from Chohen Method are a=b= 3.873 Å dan c= 4.130Å. The result of SEM PbTiO3 thin film showed that thin film has globular grain size.


2012 ◽  
Vol 591-593 ◽  
pp. 884-890
Author(s):  
Mei Liu ◽  
Hai Hui Ruan ◽  
Liang Chi Zhang

To meet different electrical or optical functionalities, thin films are often of multiple layers processed at high temperatures. Substantial residual stresses can therefore develop in such thin film systems due to the disparate thermal properties of the individual material layers. High stresses can lead to mechanical failure of the systems and thus understanding the residual stresses in thin film systems is important. This paper presents a systematic way to characterize the residual stresses in epitaxial, polycrystalline and amorphous layers by using X-ray diffraction (XRD) techniques. The single-point XRD pattern renders the stresses of crystalline layers and the scanning XRD gives the curvature of the whole film. Based on the newly-developed analytical model, the residual stresses of each layer can all be determined.


Author(s):  
W. W. Barker ◽  
W. E. Rigsby ◽  
V. J. Hurst ◽  
W. J. Humphreys

Experimental clay mineral-organic molecule complexes long have been known and some of them have been extensively studied by X-ray diffraction methods. The organic molecules are adsorbed onto the surfaces of the clay minerals, or intercalated between the silicate layers. Natural organo-clays also are widely recognized but generally have not been well characterized. Widely used techniques for clay mineral identification involve treatment of the sample with H2 O2 or other oxidant to destroy any associated organics. This generally simplifies and intensifies the XRD pattern of the clay residue, but helps little with the characterization of the original organoclay. Adequate techniques for the direct observation of synthetic and naturally occurring organoclays are yet to be developed.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Lars Banko ◽  
Phillip M. Maffettone ◽  
Dennis Naujoks ◽  
Daniel Olds ◽  
Alfred Ludwig

AbstractWe apply variational autoencoders (VAE) to X-ray diffraction (XRD) data analysis on both simulated and experimental thin-film data. We show that crystal structure representations learned by a VAE reveal latent information, such as the structural similarity of textured diffraction patterns. While other artificial intelligence (AI) agents are effective at classifying XRD data into known phases, a similarly conditioned VAE is uniquely effective at knowing what it doesn’t know: it can rapidly identify data outside the distribution it was trained on, such as novel phases and mixtures. These capabilities demonstrate that a VAE is a valuable AI agent for aiding materials discovery and understanding XRD measurements both ‘on-the-fly’ and during post hoc analysis.


1988 ◽  
Vol 119 ◽  
Author(s):  
Hung-Yu Liu ◽  
Peng-Heng Chang ◽  
Jim Bohlman ◽  
Hun-Lian Tsai

AbstractThe interaction of Al and W in the Si/SiO2/W-Ti/Al thin film system is studied quantitatively by glancing angle x-ray diffraction. The formation of Al-W compounds due to annealing is monitored by the variation of the integrated intensity from a few x-ray diffraction peaks of the corresponding compounds. The annealing was conducted at 400°C, 450°C and 500°C from 1 hour to 300 hours. The kinetics of compound formation is determined using x-ray diffraction data and verified by TEM observations. We will also show the correlation of the compound formation to the change of the electrical properties of these films.


2008 ◽  
Vol 3 ◽  
pp. 97-102 ◽  
Author(s):  
Dinu Patidar ◽  
K.S. Rathore ◽  
N.S. Saxena ◽  
Kananbala Sharma ◽  
T.P. Sharma

The CdS nanoparticles of different sizes are synthesized by a simple chemical method. Here, CdS nanoparticles are grown through the reaction of solution of different concentration of CdCl2 with H2S. X-ray diffraction pattern confirms nano nature of CdS and has been used to determine the size of particle. Optical absorption spectroscopy is used to measure the energy band gap of these nanomaterials by using Tauc relation. Energy band gap ranging between 3.12 eV to 2.47 eV have been obtained for the samples containing the nanoparticles in the range of 2.3 to 6.0 nm size. A correlation between the band gap and size of the nanoparticles is also established.


1990 ◽  
Vol 7 (7) ◽  
pp. 308-311
Author(s):  
Li Chaorong ◽  
Mai Zhenhong ◽  
Cui Shufan ◽  
Zhou Junming ◽  
Yutian Wang

Sign in / Sign up

Export Citation Format

Share Document