Research on Wear Characteristics of CVD Composite Coated Tool in Natural Marble Cutting

2014 ◽  
Vol 941-944 ◽  
pp. 1644-1649
Author(s):  
De Hong Zhao ◽  
Guang Yu Yan ◽  
Qiong Wu

The high speed milling test of CVD composite coated tool cutting natural marble is carried out. Measured milling forces of different parameters by the dynamometer and analyzed the influence of different parameters on the cutting force. Observed the wear appearance by the SEM and analyzed the wear mechanism of CVD tool. The results of the experiment show that the cutting force increases along with the cutting depth and feed speed increase, decreases along with the spindle speed and the influence of the cutting depth is the largest. The wear mechanisms of CVD tool when milling the natural marble include the removal of mechanical loss on the tool substrate, oxidation wear and adhesion wear. The removal of mechanical loss and adhesion wear couple with the whole process of CVD composite coated tool.

2014 ◽  
Vol 494-495 ◽  
pp. 602-605
Author(s):  
Zeng Hui An ◽  
Xiu Li Fu ◽  
Ya Nan Pan ◽  
Ai Jun Tang

Cutting forces is one of the important physical phenomena in metal cutting process. It directly affects the surface quality of machining, tool life and cutting stability. The orthogonal experiments of cutting forces and influence factors with indexable and solid end mill were accomplished and the predictive model of milling force was established during high speed end milling 7050-T7451 aluminum alloy. The paper makes research mainly on the influence which the cutting speed, cutting depth and feed have on the cutting force. The experimental results of single factor showed that the cutting forces increase earlier and drop later with the increase of cutting speed, and the cutting speed of inflexion for 7050-T7451 is 1100m/min. As axial cutting depth, radial cutting depth and feed rate increase, the cutting force grows in different degree. The cutting force is particularly sensitive to axial cutting depth and slightly to the radial cutting depth.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3266 ◽  
Author(s):  
Yuan Li ◽  
Guangming Zheng ◽  
Xiang Cheng ◽  
Xianhai Yang ◽  
Rufeng Xu ◽  
...  

The cutting performance of cutting tools in high-speed machining (HSM) is an important factor restricting the machined surface integrity of the workpiece. The HSM of AISI 4340 is carried out by using coated tools with TiN/TiCN/TiAlN multi-coating, TiAlN + TiN coating, TiCN + NbC coating, and AlTiN coating, respectively. The cutting performance evaluation of the coated tools is revealed by the chip morphology, cutting force, cutting temperature, and tool wear. The results show that the serration and shear slip of the chips become more clear with the cutting speed. The lower cutting force and cutting temperature are achieved by the TiN/TiCN/TiAlN multi-coated tool. The flank wear was the dominant wear form in the milling process of AISI 4340. The dominant wear mechanisms of the coated tools include the crater wear, coating chipping, adhesion, abrasion, and diffusion. In general, a TiN/TiCN/TiAlN multi-coated tool is the most suitable tool for high-speed milling of AISI 4340, due to the lower cutting force, the lower cutting temperature, and the high resistance of the element diffusion.


2011 ◽  
Vol 341-342 ◽  
pp. 318-322
Author(s):  
Yong Xiang Gao

During the high-speed machining, cutter path of numerical control needs to satisfy the following requirements. There has no colliding among work pieces, fixtures and so on. The cutter path variation cannot too dramatically and the vibration should in the controlled area during the process. Feed speed can modify with path curvature variation and cutting depth need to be equality. This article will analyze and research in the mode of cutter advanced and retreats, cutter movement mode, cutter feed mode and cutter path of corner treatment during the high-speed process programming that could effective optimize cutter path, process efficiency and quality.


2017 ◽  
Vol 748 ◽  
pp. 224-228 ◽  
Author(s):  
Bao Liang Xing ◽  
Jing Wang ◽  
Hui Ying Cao ◽  
Shu Zhong Zhang ◽  
Wei Wei ◽  
...  

Based on the experiment of turning aluminium alloy (7075-T651), the relations between the fractal dimensions of cutting forces with machining parameters are studied. Cutting speed, feed speed and cutting depth are considered as the process parameters. The cutting force in turning aluminium alloy operation are measured and the fractal dimension are calculated using the algorithm of correlation dimension. From main effect plots the fractal dimensions of three directions of cutting forces are reduced with the increase of cutting speed, increased with the increase of cutting depth and insignificant with the increase of feed speed. The mathematic models of fractal dimension of cutting force are developed using response surface methodology (RSM). The results of the ANOVA show that cutting speed and cutting depth have remarkable influence to fractal dimension Dx, Dy and Dz.


2017 ◽  
Vol 748 ◽  
pp. 212-217 ◽  
Author(s):  
Zheng Mei Zhang ◽  
Bao Liang Xing ◽  
Jing Wang ◽  
Hui Ying Cao ◽  
Shao Hua Li

Based on the experiment of milling aluminium alloy (7075-T651), the relations between the fractal dimensions of cutting forces with machining parameters are studied. Cutting speed, feed speed and cutting depth are considered as the process parameters. The cutting force in milling aluminium alloy operation are measured and the fractal dimension are calculated using the algorithm of correlation dimension. From main effect plots the fractal dimensions of three directions of cutting forces are reduced with the increase of cutting speed and increased with the increase of feed speed and cutting depth. The mathematic models of fractal dimension of cutting force are developed using response surface methodology (RSM). The results of the ANOVA show that feed speed and cutting depth have remarkable influence to fractal dimension Dx and Dy, cutting speed and feed speed for Dz.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qingliang Zeng ◽  
Zhiwen Wang ◽  
Zhenguo Lu ◽  
Lirong Wan ◽  
Xin Zhang

The diamond sawblade has been widely used in the field of rock mining and processing. This article, through the establishment of a numerical simulation model of diamond sawblade cutting rock, studies the influence of the distance between the diamond sawblade and free surface on cutting performance. In the process of diamond sawblade cutting rock, with the increase of the distance from the sawblade to the free surface, the average cutting force, normal force, and tangential force of the sawblade increase at first and then stabilize, and the axial force gradually decreases and tends to be stable. In the process of cutting rock with fixed depth, cutting force and rock damage are positively related to feed speed and cutting depth of the diamond sawblade. Through the statistical analysis of rock damage by image recognition program statistics, it is concluded that the feed speed and cutting depth of the sawblade have a significant impact on the rock damage value. When the distance increases to 12 mm, there is a relatively complete rock plate between the sawblade and free surface. The rock free surface damage disappears when distance reaches 16 mm. The research results provide a theoretical basis for the sawblade processing rock plate.


2013 ◽  
Vol 652-654 ◽  
pp. 2191-2195 ◽  
Author(s):  
Zheng Mei Zhang ◽  
Hai Wen Xiao ◽  
Gui Zhen Wang ◽  
Shu Zhong Zhang ◽  
Shu Qin Zhang

Based on experiment of sawing Wulian red granite with diamond circular saw, the relations between the cutting force with machining parameters are studied. Cutting speed, feed rate and cutting depth are considered as the process parameters. The cutting force in sawing granite operation are measured and the experimental results are then analyzed using response surface methodology. From the analysis, it is seen that the cutting force Fx , Fy and Fz are reduced with the increase of cutting speed and increased with the increase of feed rate and cutting depth, and the mathematical models of the cutting force are developed. By ANOVA for the cutting force models, It is concluded that the models are significant at 95% confidence level and the significant effects are the first-order of cutting speed, feed speed, cutting depth and the quadratic of cutting depth.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Zhiwen Wang ◽  
Qingliang Zeng ◽  
Zhenguo Lu ◽  
Zhihai Liu ◽  
Xu Li

The rock cutting process with a circular sawblade and the rock breaking mechanism of rock are studied with a numerical simulation method in this paper. The influence of cutting parameters of the circular sawblade on cutting force, rock damage, and specific cutting energy in the process of circular sawblade cutting rock is researched. The cutting force increases with the feed speed and an increase in cutting depth and decline in rotation speed. Cutting rock with double circular sawblades can reduce cutting force. However, the specific cutting energy declines with the increase in cutting depth and the decline in the distance between the double circular sawblades. Cutting parameters have a great influence on the damage range of rock. The research results can be applied to rock processing with a circular sawblade.


2011 ◽  
Vol 188 ◽  
pp. 542-548 ◽  
Author(s):  
Jie Liu

High-speed machining requires the support of high intelligent CAM software as well as customized machining strategies and properly selected machining parameters. Only by combining the two can the advantage of high-speed machining be made full use of. Compared to ordinary NC cutting, high-speed machining has special requirements for process strategies, CAM system and tool path. A complete tool path includes approaching/retracting tool, moving tool and tool path. Based on the above principles, a mould part is successfully processed using the PowerMILL software at the high-speed machining centre of DMG-DMU40T. The maximum hardness of the mould part is HRC50. There’s a 30 degree corner in the cavity with a transition radius of 3mm. The whole process can be divided into three stages: rough, semi-finish and finish machining and each stage involves the selection of tool path, the selection of tool, the selection of cutting parameters (including spindle speed, feed speed and depth of cut), and the application of PowerMILL specific machining methods (such as Race-line machining, rest roughing, automatic trochoidal machining, 3D offset finishing and etc).


2013 ◽  
Vol 395-396 ◽  
pp. 1031-1034
Author(s):  
Can Zhao ◽  
Yu Bo Liu

This paper makes an experiment in high-speed milling of Inconel 718. Cutting tests were performed using round and ceramic tools, at feeds from 0.06 to 0.14 mm/tooth, Axial Depth of Cut from0.5 to 1.5mm,and cutting speeds ranging from 500 to 1037 m/min. The behaviour of the cutting forces during machining was then measure. The results show that cutting force increases first and then decreases with the increase of feed per tooth, the tool chipping and groove wear were found with the increase of axial cutting depth, and cutting force is increased; the increase in cutting force with the cutting speed increases, when the cutting speed reaches a critical speed, the cutting force as the cutting speed increases began to decline.


Sign in / Sign up

Export Citation Format

Share Document