Compound and Engineering Application of Fiber Reinforced Concrete with Low Shrinkage

2014 ◽  
Vol 941-944 ◽  
pp. 873-876
Author(s):  
Jian Fen Li ◽  
Shu Jin Li

On the basis of experimental research about PVA fiber concrete, combined with the technology measures such as expansive belt, construction quality monitoring, the jointless design and construction is successfully carried out for an industry tank. The water storage test results showed that impervious performances can meet the requirements of specification and achieved desired effects.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Linling Ma ◽  
Bin Wang ◽  
Lei Zeng ◽  
Yunfeng Xiao ◽  
Heng Zhang ◽  
...  

To verify the damping improvement by replacing partial sand with rubber powder in the concrete process, this study investigated the effects of the rubber powder (5%, 10%, 15%, and 20%) on the mechanical properties and micromechanism of polyvinyl alcohol (PVA) fiber-reinforced concrete. In addition, in order to discuss its damping performance, free vibration test was conducted. Microstructure analyses were conducted by the scanning electron microscope (SEM) test. These results indicated that, as the content of the rubber powder increased, the damping ratio increased, and the compressive strength decreased, but this strength loss can be effectively controlled by adding PVA fiber. The rubber powder with a volume content of 5% and PVA with a mass of 2.4 kg/m3 were the most optimal mixing to balance the strength and damping requirement. According to the SEM test results, the rubber powder was beneficial to improve the damping ratio of PVA concrete, but it aggravated its interface defects.


2010 ◽  
Vol 168-170 ◽  
pp. 384-392 ◽  
Author(s):  
Tie Cheng Wang ◽  
Hai Long Zhao ◽  
Jin Jin Hao ◽  
Jian Quan Zu

The marked brittleness of concrete could be overcome by the addition of fibers. This paper experimentally investigated the mechanical properties and constitutive relationship of different fiber reinforced concrete. It is shown from the results that the compressive strength and peak strain of concrete with fiber have little improvement, but the ultimate strain, deformation capacity, toughness and energy dissipation capacity are improved greatly. The damage constitutive model recommended by the emendatory code for design of concrete structure (appendix C) (GB50010-2002) is applied for calculations and analyses according to the test results. The damage constitutive model and non-elastic constitutive model of different fiber reinforced concrete are established based on the test results. It is indicated from the analyses that the constitutive models established in this paper are in accordance with the characteristic of the fiber reinforced concrete in loading process. The damage constitutive model in appendix C in code could be applied directly in some low precision calculation and engineering application.


2012 ◽  
Vol 446-449 ◽  
pp. 703-707
Author(s):  
Yong Dong Yan ◽  
Jiang Hong Mao ◽  
Chun Hua Lu

In order to investigate the effects of polyvinyl alcohol (PVA) fibers on the performance of concrete, such as strength, crack resistance, permeability and chloride penetration properties, experimental research were carried out in this paper . Three types of fiber reinforced concretes with 0, 0.5%, 1.0% volume fractions were designed with the same water to cement ratio of 0.43. Flat band method was used to evaluate the cracking resistance, while AutoCLAM and ASTM C1202 were adopted to measure the permeability of concrete. The experimental results showed that the workability and the compression strength decreased as PVA adding volume increasing. However, the tension and the bending strengths increased for PVA fiber concrete. The number of cracks induced by the shrinkage of concrete was reduced by adding more PVA fibers. The permeability and chloride penetration ascended as PVA volume increasing. However, all the parameters with regards to strength, crack resistance, permeability and chloride penetration for fiber reinforced concrete were more reasonable than those for the specimens without PVA fiber. In additional, a very good correlation between the permeability and the electric flux was found in this paper, that means both AutoCLAM and ASTM C1202 could be used for concrete penetration test.


2010 ◽  
Vol 168-170 ◽  
pp. 1615-1620 ◽  
Author(s):  
Xiao Fan Liu ◽  
Xiao Zhou Sheng ◽  
Ji Xiang Li ◽  
Yun Xia Lun

In order to study the effect of fibers to the anti-crack performance of the concrete, sixteen different plat restraint specimens with four different fiber mixing amount (steel fiber is 0, 0.5%, 1%, 1.5%, and polypropylene fiber is 0, 0.1%, 0.2%, 0.3% respectively), are selected to comparison about the influence on the anti-cracking property of the hybrid fiber concrete, single fiber reinforced concrete and plain concrete. Experiments show that fibers increasing the anti-crack performance of the concrete significantly. The relationship between fibers’ content and the crack area is analyzed, and the microscopic mechanism of the anti-crack performance is discussed. Considering the economy and the convenient for construction, the column ratio of 0.5% steel fiber and 0.1% polypropylene fiber is recommended.


2013 ◽  
Vol 438-439 ◽  
pp. 257-261
Author(s):  
Shu Jin Li ◽  
Hong Ping Qian

An investigation of early anti-cracking performance and permeability of hybrid cellulose fiber and PVA fiber reinforced concrete is presented in this article. The test results show that, both cellulose fiber and PVA fiber effectively improve the splitting tensile strength. The early anti-cracking performance of concrete is obviously improved by PVA and cellulose hybrid fibers, and there exists the synergistic effect for restrain matrix cracking with hybrid fibers. Based on the practical application of a subway station project during two years, result shows the underground concrete wallboard containing hybrid fibers does not produce obvious cracks and leakage problem.


2021 ◽  
pp. 136943322098165
Author(s):  
Hossein Saberi ◽  
Farzad Hatami ◽  
Alireza Rahai

In this study, the co-effects of steel fibers and FRP confinement on the concrete behavior under the axial compression load are investigated. Thus, the experimental tests were conducted on 18 steel fiber-reinforced concrete (SFRC) specimens confined by FRP. Moreover, 24 existing experimental test results of FRP-confined specimens tested under axial compression are gathered to compile a reliable database for developing a mathematical model. In the conducted experimental tests, the concrete strength was varied as 26 MPa and 32.5 MPa and the steel fiber content was varied as 0.0%, 1.5%, and 3%. The specimens were confined with one and two layers of glass fiber reinforced polymer (GFRP) sheet. The experimental test results show that simultaneously using the steel fibers and FRP confinement in concrete not only significantly increases the peak strength and ultimate strain of concrete but also solves the issue of sudden failure in the FRP-confined concrete. The simulations confirm that the results of the proposed model are in good agreement with those of experimental tests.


2012 ◽  
Vol 174-177 ◽  
pp. 668-671
Author(s):  
He Ting Zhou

Steel fiber has a fine nature in reinforcing concrete. This essay aims to find out the influence of physical forms of steel fiber on its nature of reinforcement. By comparing two types of cement mortar reinforced by steel fibers, it is found that spiral steel fibers have a better bond strength with matrix than straight ones. Therefore, a conclusion could be drawn that physical forms of the steel fiber play a significant role in steel fiber reinforced concrete, and the experiment also serves a rewarding reference to the application of spiral steel fibers.


2021 ◽  
Vol 1038 ◽  
pp. 323-329
Author(s):  
Zlata Holovata ◽  
Daria Kirichenko ◽  
Irina Korneeva ◽  
Stepan Neutov ◽  
Marina Vyhnanets

The design of a stand for testing concrete and fiber-reinforced concrete specimens-"eight" in tension, which provides axial load application and minimizes the effect of stress concentration at the ends of the specimen. The design of the stand is such that the distance between the axis of load application and the central hinge is 108 cm, and between this hinge and the axis of the test specimen is 21 cm, as a result of which the load transferred to the specimen is 5.143 times greater than the applied one. At the first stage of testing, it was found that the optimal characteristics of the fiber-concrete mixture is a matrix with a large aggregate ≤ 10 mm with 1.0% fiber reinforcement. At the second stage, the ultimate strength of fiber-reinforced concrete for axial tension was determined - 1.28 MPa when reinforced with wave fiber and 1.37 MPa when reinforced with anchor fiber, which amounted to 4.1% and 4.4% of compressive strength, respectively. It was also found that concrete reinforced with anchor fiber has higher deformation properties than concrete reinforced with wave fiber.


Concrete is a globally utilized material in the construction field. In the last few decades, Concrete consumption has become multifold and usage has enhanced in massive scale due to the rapid growth of infra sector. Generally, Concrete consists of cement, aggregate, and water; these ingredients become more expensive day by day and additionally hard to please and is increasing widely. During the process of making Ordinary Portland Cement(OPC) produces a large amount of greenhouse gases and the environment being polluted. To minimize the cement utilization and environmental issues is essential to switch the cement by another alternate materials such as pozzolanas. The various number of pozzolanic materials comes from industrial wastes are Groundz Granulatedz Blastz furnacez Slagz (GGBS), xFlyqAsh (FA), zSilicazFume (SF), Metakaolin (MK) etc are utilized in concrete. Similarly, the availability of river sand is getting drained furthermore it turns out troublesome. In order to avoid this problem river sand is alter by zManufacturedkSand (M Sand). An attempt is made in the present investigation to study on properties of fiber reinforced concrete (qsteelu fibers @ 1% of binder) of M40 grade made with OPC, GGBS, MK and manufactured sand. In this study, OPC is replaced by GGBS and MK in different proportions. By casting requisite number of cubes, cylinders then zMechanical properties are determined such as fCompressivekstrength,sSplitdtensile strength tests and durability properties are determined by conducting Water absorption and Sorptivity tests. Test results are compared between controlled concrete and innovative concrete of M40 grade.It is observed that 30%(15%GGBS,15%MK) replacement is optimum for strength and durability criteria.


Sign in / Sign up

Export Citation Format

Share Document