Chromium Removal from Aqueous Solution by Microwave-Modified Phosphogypusum

2014 ◽  
Vol 955-959 ◽  
pp. 16-20 ◽  
Author(s):  
Ping Ning ◽  
Lei Shi ◽  
Yue Hong Yang ◽  
Yang Cheng

The removal of chromium (VI) ions from aqueous solution by microwave-modified phosphogypsum was studied. The removal capacity of microwave-modified phosphogypsum for chromium (VI) ions was examined as a function of solution pH, contact time, adsorbent dosage. Before a series of the adsorption studies, phosphogypsum was pre-conditioned with microwave. It was observed that the adsorption of the chromium (VI) ions onto the phosphogypsum in the pH range of 2 and 11. The chromium (VI) adsorption process was described with the Langmuir and Freundlich theories, and the Freundlich model indicated the best fit to the adsorption process. Maximum adsorption capacity of microwave-modified phosphogypsum was found to be 3.126 mg g−1. The results proved that the microwave-modified phoshogypsum is a suitable adsorbent for the removal of chromium (VI) ions from aqueous solution.

2021 ◽  
Vol 333 ◽  
pp. 04004
Author(s):  
Anh Viet Hoang ◽  
Ya Wen Chen ◽  
Ya-Fen Wang ◽  
Syouhei Nishihama ◽  
Kazuharu Yoshizuka

Reductive adsorption of chromium (Cr) has been investigated, employing coal-based activated carbon with batchwise study. The adsorption was carried out by varying parameters such as pH of the aqueous solution and contact time. Cr(III) was hardly adsorbed on activated carbon, and it was precipitated at high pH region. High adsorption amounts of Cr(VI) was obtained at pH range 4.5 – 5.5. In the adsorption process, reduction of Cr(VI) to Cr(III) was occurred at especially acidic pH region, and thus most of Cr remained in the aqueous solution in this pH region was Cr(III).


2020 ◽  
Vol 69 (5) ◽  
pp. 438-452 ◽  
Author(s):  
Mazen K. Nazal ◽  
Durga Rao ◽  
Nabeel Abuzaid

Abstract Many industries produce 2,4-dimethylphenol (DMP) compound in the wastewater which is persistent, toxic, and carcinogenic. Therefore, an adsorbent was prepared by carbonizing a dried Sargassum boveanum macroalgae. The prepared biosorbent was investigated for adsorptive removal of DMP from aqueous solution. After carbonization, the biochar derived from S. boveanum macroalgae (BCM) removed almost 100% of DMP adsorbate. Effects of contact time, solution pH, adsorbate concentration, adsorbent mass, and temperature have been studied. It has been found that, within the experimental conditions, the maximum adsorption capacity is 17 mg/g, rate of adsorption follows pseudo-second order kinetics and the adsorption isotherm experimental data fit the Freundlich model. The thermodynamic parameters were calculated and it has been found that the adsorption of DMP on BCM is endothermic and thermodynamically favorable, and in addition the surface of BCM adsorbent shows affinity to the DMP molecules. The BCM adsorbent has the capability to remove around 65% of DMP from high saline seawater contaminated with DMP. Moreover, the prepared BCM adsorbent was reusable for at least four times in seawater for removal of DMP contaminant.


2017 ◽  
Vol 13 (27) ◽  
pp. 425
Author(s):  
Azeh Yakubu ◽  
Gabriel Ademola Olatunji ◽  
Folahan Amoo Adekola

This investigation was conducted to evaluate the adsorption capacity of nanoparticles of cellulose origin. Nanoparticles were synthesized by acid hydrolysis of microcrystalline cellulose/cellulose acetate using 64% H3PO4 and characterized using FTIR, XRD, TGA-DTGA, BET and SEM analysis. Adsorption kinetics of Pb (II) ions in aqueous solution was investigated and the effect of initial concentration, pH, time, adsorbent dosage and solution temperature. The results showed that adsorption increased with increasing concentration with removal efficiencies of 60% and 92.99% for Azeh2 and Azeh10 respectively for initial lead concentration of 3 mg/g. The effects of contact time showed that adsorption maximum was attained within 24h of contact time. The maximum adsorption capacity and removal efficiency were achieved at pH6. Small dose of adsorbent had better performance. The kinetics of adsorption was best described by the pseudo-second-Order model while the adsorption mechanism was chemisorption and pore diffusion based on intra-particle diffusion model. The isotherm model was Freundlich. Though, all tested isotherm models relatively showed good correlation coefficients ranging from 0.969-1.000. The adsorption process was exothermic for Azeh-TDI, with a negative value of -12.812 X 103 KJ/mol. This indicates that the adsorption process for Pb by Azeh-TDI was spontaneous. Adsorption by Azeh2 was endothermic in nature.


2012 ◽  
Vol 518-523 ◽  
pp. 369-375 ◽  
Author(s):  
Yue Hong Yang ◽  
Dun Tao Shu ◽  
Ting Dong Fu ◽  
Huai Yu Zhang

The purpose of this study was to investigate the adsorption of Cu(II) on phosphogypsum, a waste material from the manufacture of phosphoric acid by wet process. The removal capacity of phosphogypsum for Cu(II) ions was studied as a function of solution pH, contact time, adsorbent dosage and adsorbate concentration. Before batch adsorption study, phosphogypsum was pre-conditioned by calcine without water. The Langmuir and Freundlich theories were used to describe the Cu(II) adsorption process, and the Freundlich isotherm showed the best fit to the process. The adsorptions of Cu(II) followed pseudo-second-order kinetics. Maximum adsorption capacity of lime-preconditioned phosphogypsum was found to be 2.824 mg/g. The results showed that the phoshogypsum is a suitable adsorbent for the removal of Cu(II) ions from aqueous solutions.


2020 ◽  
Vol 12 (1) ◽  
pp. 167-177
Author(s):  
Ayuba Abdullahi Muhammad ◽  
Nyijime Thomas Aondofa

Carbonized Bambara GroundNut Shell (CBGNS) was used as adsorbent for the adsorption of paraquat dichloride (PQ) from aqueous solution. The prepared adsorbent was characterized using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy methods. Several parameters that might affect the adsorption process including pH, contact time, adsorbent dosage, temperature and initial concentration were investigated and optimized using batch adsorption technique. Results of the study revealed that maximum removal efficiency (98%) was achieved using 0.05g adsorbent dosage, solution pH of 5 and 60 min of contact time. The equilibrium experimental result revealed that Langmuir model best described the adsorption process with R2 value of 0.956.The heat of adsorption process was estimated from Temkin Isotherm model to be 19.99J/mol and the mean free energy was estimated from Duninin-Radushkevich (DRK) isotherm model to be 0.289KJ/mol indicating chemisorptions process. The kinetic and thermodynamic studies revealed that the adsorption processes followed pseudo-second-order kinetics with R2 value of 0.999 and the value of ∆G (- 27.74 kJ mol-1), ∆H (13.145 kJ mol-1) indicate the spontaneous and endothermic nature of PQ adsorption on CBGNS. The results suggested that CBGNS had the potential to become a promising material for PQ contaminated water treatment. Keywords: Adsorption, Paraquat dichloride, Carbonized Bambara Ground nut shell, Water treatment.


2021 ◽  
pp. 1-12
Author(s):  
Raafia Najam ◽  
Syed Muzaffar Ali Andrabi

Sawdust of willow has been investigated as an adsorbent for the removal of Ni(II), and Cd(II) ions from aqueous solution. Since willow tree is widely grown in almost all parts of Kashmir, it can be a common most easily available, sustainable, low cost adsorbent for the treatment of wastewaters in this part of the world where growing industrialization is affecting water quality like elsewhere in the world. Therefore, it is worthwhile to investigate the potential of sawdust of willow tree as an adsorbent for the removal of Ni(II) and Cd(II) ions from aqueous solution as a first step. Batch experiments were conducted to study the effect of some parameters such as contact time, initial concentration of metal ions, solution pH and temperature. Langmuir and Freundlich models were employed for the mechanistic analysis of experimental data obtained. Results reveal that in our system adsorption follows the Langmuir isotherm. The maximum adsorption capacity of Ni(II) and Cd(II) were found to be 7.98 and 7.11 mg/g respectively at optimum conditions. The pseudo-first-order and pseudo-second-order models were employed for kinetic analysis of adsorption process. The adsorption process follows pseudo-second-order kinetics. The efficacy of the adsorbent in the treatment of effluent from fertilizer factory has been investigated and the results have been found encouraging.


2017 ◽  
Vol 57 (2) ◽  
Author(s):  
Guillermina Burillo ◽  
Juan Serrano-Gómez ◽  
Juan Bonifacio-Martínez

Polypropylene (PP) grafted with dimethylaminoethylmethacrylate (DMAEMA), was prepared by irradiation with a <sup>60</sup>Co γ source. The obtained PP-<em>g</em>-DMAEMA was used to study the Cr(VI) ion adsorption as a function of contact time, initial pH, initial concentration of metal ion and temperature. Chromium adsorption data on PP-<em>g</em>-DMAEMA at various initial concentration fit well the Freundlich and Langmuir isotherms. The maximum adsorption capacity (a<sub>max</sub>) was found to be 0.3103 × 0<sup>-4</sup> mol g<sup>-1</sup>. The thermodynamic parameters ΔH<sup>0</sup>, ΔG<sup>0</sup> and ΔS<sup>0</sup> were estimated showing the adsorption process to be exothermic and spontaneous.


2020 ◽  
Vol 43 (1) ◽  
pp. 70-79
Author(s):  
Lan Huong Nguyen ◽  
Huu Tap Van ◽  
Quang Trung Nguyen ◽  
Thu Huong Nguyen ◽  
Thi Bich Lien Nguyen ◽  
...  

In this work, paper waste sludge (PWS) collected from the primary settling tank of the paper wastewater treatment plant was utilized to generate hydrochar as a low-cost adsorbent for removal of Cr(VI) from aqueous solution. The characteristics of paper waste sludge hydrochar (PWSH) and the effects of adsorption conditions of Cr(VI) onto PWSH, including solution pH (3-9), contact time (5-240 min), initial Cr(VI) concentration (10-80 mg/L) and the adsorbent dose of 1 g/L at room temperature (25±2°C) were investigated. Adsorption isotherm and kinetics were also predicted in this work. The results indicate that the maximum adsorption capacity achieved 11.89 mg/g at 120 min of contact time, pH 3, and initial Cr(VI) concentration of 60 mg/L. The adsorption isotherm was reflected the best by the Langmuir model (R2 of 0.9968). Whereas, the adsorption kinetic also indicates that the pseudo-second-order model predicted the best for Cr(VI) adsorption process with a R2 of 0.9469. The mechanism of Cr(VI) adsorption process onto PWSH was chemical sorption through electrostatic interaction and ion exchange.


2016 ◽  
Vol 6 (3) ◽  
pp. 377-388 ◽  
Author(s):  
Ibrahim Umar Salihi ◽  
Shamsul Rahman Muhamed Kutty ◽  
Muhamed Hasnain Isa ◽  
Nasir Aminu

Pollution caused by heavy metals has become a serious problem to the environment nowadays. The treatment of wastewater containing heavy metals continues to receive attention because of their toxicity and negative impact on the environment. Recently, various types of adsorbents have been prepared for the uptake of heavy metals from wastewater through the batch adsorption technique. This study focused on the removal of zinc from aqueous solution using microwave incinerated sugarcane bagasse ash (MISCBA). MISCBA was produced using microwave technology. The influence of some parameters such as pH, contact time, initial metal concentration and adsorbent dosage on the removal of zinc was investigated. The competition between H+ and metal ions has affected zinc removal at a low pH value. Optimum conditions for zinc removal were achieved at pH 6.0, contact time 180 min and adsorbent dosage of 10 g/L, respectively. The maximum adsorption capacity for the removal of zinc was found to be 28.6 mg/g. The adsorption process occurred in a multilayered surface of the MISCBA. Chemical reaction was the potential mechanism that regulates the adsorption process. MISCBA can be used as an effective and cheap adsorbent for treatment of wastewater containing zinc metal ions.


2014 ◽  
Vol 665 ◽  
pp. 479-482
Author(s):  
Chao Shuai ◽  
Yun Wen Liao ◽  
He Jun Gao ◽  
Luan Luan Zhang

A novel organic-inorganic PAA@Fe-Si composite material was synthesized by acrylic acid and mesoporous iron-incorporated material and used as an efficient and specific adsorbent for the removal of methylene blue (MB), a cationic dye from aqueous solution. The properties of the composite material were characterized by scanning electron microscopy, Fourier transform infrared and thermogravimetric. The effects of initial solution pH, adsorbent dosage, and contact time on MB adsorption and temperature have been investigated. The results showed that the maximum adsorption capacity of PAA@Fe-Si reached 587mg/g at 298 K, which was much better than pure Fe-Si adsorbent.


Sign in / Sign up

Export Citation Format

Share Document