Yield and Rheological Behaviors of Magnetorheological Fluids

2010 ◽  
Vol 97-101 ◽  
pp. 875-879
Author(s):  
Jian Min He ◽  
Jin Huang ◽  
Cheng Liu

Magnetorheological (MR) fluids are materials that respond to an applied magnetic field with the change of their yield and rheological behaviors. In this paper, the yield and rheological behaviors of MR fluids are discussed. Based on the microstructure of magnetic chain a theoretical model is developed to analyze the effect of an applied magnetic field on the yield stress of MR fluids. Bingham model is used to describe the rheological behaviors of MR fluids subject to an applied magnetic field. The results show that altering the strength of an applied field can control the yield stress of MR fluids. The shear stress increases as the strength of an applied magnetic field increases, and it hardly changes with the increase of shear strain rate. MR fluids exhibit Bingham plastic model.

2005 ◽  
Vol 19 (01n03) ◽  
pp. 597-601 ◽  
Author(s):  
J. HUANG ◽  
J. Q. ZHANG ◽  
J. N. LIU

The yield stress is one of the most important parameters that characterize viscoplastic properties of magnetorheological (MR) fluids. Based on the microstructure of magnetic-chain a theoretical model is developed to analyze the effect of the applied magnetic field on the yield stress. It has been shown that the values of the yield stress calculated by the model agree well with the experimental data.


1999 ◽  
Vol 604 ◽  
Author(s):  
M.R. Jolly

AbstractMagnetorheological (MR) fluids are materials that respond to an applied magnetic field with a change in rheological behavior. Typically, this change is manifested by the development of a yield stress that monotonically increases with applied field. Interest in MR fluids derives from their ability to provide simple, quiet and rapid response interfaces between electronic controls and mechanical systems. In this paper, the basic composition and properties of example MR fluids are reviewed. Some contemporary applications of MR fluids are then discussed.


2005 ◽  
Vol 19 (01n03) ◽  
pp. 593-596 ◽  
Author(s):  
J. M. HE ◽  
J. HUANG

Magnetorheological (MR) fluids are materials that respond to an applied magnetic field with a change in their rheological properties. Upon application of a magnetic field, MR fluids have a variable yield strength. Altering the strength of the applied magnetic field will control the yield stress of these fluids. In this paper, the method for measuring the yield stress of MR fluids is proposed. The curves between the yield stress of the MR fluid and the applied magnetic field are obtained from the experiment. The result indicates that with the increase of the applied magnetic field the yield stress of the MR fluids goes up rapidly.


2007 ◽  
Vol 21 (28n29) ◽  
pp. 4922-4928 ◽  
Author(s):  
G. T. NGATU ◽  
N. M. WERELEY

Our bidisperse magnetorheological fluids are suspensions of micron (2-10μm) and nanometer (~40nm) scale magnetic iron particles in silicone or hydraulic oil. Earlier studies were conducted to determine the yield stress of these fluids at low magnetic field induction. These studies have shown the absence of saturation yield stress implying the possibility of a higher yield stress by increasing the applied field. In this study, three different bidisperse MR fluids were investigated to determine the maximum available yield stress that can be obtained at or near saturation magnetic flux density. The iron loading in the fluids varied from 50% to 80% by weight. Two types of MR cells, a low field and a high field cells, were used for the investigation. Using a parallel disc rheometer alternatively equipped with one of the two MR cells, the flow curves of the MR fluids were obtained and their yield stress determined. The yield stress of the MR fluids as a function of applied magnetic field was identified using the Bingham-Plastic constitutive model. Results show that the high field cell (maximum 1 Tesla) was able to measure shear stress up to saturation, whereas the low field cell (maximum 0.26 Tesla) could not.


2011 ◽  
Vol 239-242 ◽  
pp. 2297-2301 ◽  
Author(s):  
Ping Wang ◽  
Jin Huang ◽  
Shu Hua Wei

A magnetorheological (MR) rotary brake is a device that transmits torque by the shear stress of the MR fluids. In this paper, Bingham model is used to describe the constitutive characteristics of MR fluids subject to an applied magnetic field. The operational principle of the MR rotary brake is introduced. The torque transmitted by MR fluids is analyzed to compute the torque transmission ability in the MR rotary brake.


2012 ◽  
Vol 233 ◽  
pp. 84-87
Author(s):  
Jiu Hua Wang ◽  
Lian Cheng Ren ◽  
Zhen Zhen Lei

A magneto-rheological (MR) fan clutch is a device that transmits torque by the shear stress of the MR fluids. In this paper, Bingham model is used to describe the constitutive characteristics of MR fluids subject to an applied magnetic field. The operational principle of the MR clutch is introduced. The torque transmitted by MR fluids is analyzed to compute the torque transmission ability in the MR clutch. The results show that with the increase of the applied magnetic field, the torque developed by MR fluids goes up rapidly.


Volume 2 ◽  
2004 ◽  
Author(s):  
Weng W. Chooi ◽  
S. Olutunde Oyadiji

Most magnetorheological (MR) fluid devices are fixed-pole valve mode devices where the fluid flows through a magnetically active valve. Controlling the strength of the magnetic field inside the valve allows the rheological properties of the MR fluid to be varied. Upon the application of a magnetic field, MR fluids develop a yield stress, which must be overcome before any flow is possible. This behavior can be represented mathematically by models of fluid with a yield stress like the Bingham plastic model. MR dampers have utilized this property of the MR fluids to provide controllable, semi-active vibration control. The most effective and widely used configuration of MR dampers incorporates an annular gap through which the MR fluid is force to flow. This paper presents a solution for annulus flows, derived from fundamental equations of fluid mechanics, of any general model of fluid with a yield stress. An example of the application of the general analytical expressions using the Herschel-Buckley model is given, and the limitations of the parallel plate approximation is illustrated for configurations whereby the size of the annular gap relative to the mean radius is large. Finally, the flow solution is incorporated into the mathematical model of an MR damper designed at the University of Manchester, and simulation results incorporating the effects of compressibility in the modeling procedure are presented. It was shown that this model can describe the major characteristics of such a device — nonlinear, asymmetric and hysteretic behaviors — successfully.


Author(s):  
Jianfeng Huang ◽  
Y. Ilyin ◽  
W.A.J. Wessel ◽  
Ruben Lubkemann ◽  
Erik Krooshoop ◽  
...  

Abstract The inter-strand contact resistance and AC losses were measured on an ITER PF Coil joint in a parallel applied AC magnetic field. In addition, the hysteresis loss was measured as a function of the angle with the applied magnetic field on a NbTi strand of the same type as in the joint with a Vibrating Sample Magnetometer (VSM). The AC loss measurements were performed at four applied field conditions for combinations of 0 or 1 T offset field and 0.2 or 0.4 T sinusoidal amplitude. The hysteresis loss of the joint was compared with the measured AC loss density of the NbTi strand for the same field conditions as the joint AC loss measurement but with varying the angle of the applied field. The subsequent cable twist angles affect the hysteresis loss since the critical current and penetration field depend on the angle of the applied field. It is found that 15.5° is an effective angle for the calculation of the hysteresis loss of joint when compared to the single strand measurement. The inter-strand contact resistance measurements cover all the typical strand combinations from the five cabling stages of the individual conductors, as well as the strand combinations across the two conductors to characterize the inter-strand including the copper sole resistivity. It’s the first time to measure the contact resistances and AC losses of the full-size ITER PF joint. By comparing the measured and simulated data in the JackPot-ACDC model, it’s also the first time to obtain the accurate inter-strand, inter-petal and strand to copper sole contact resistivities, which are the main input parameters for the further quantitative numerical analysis of the PF joints, in any current and magnetic field conditions.


2018 ◽  
Vol 20 (30) ◽  
pp. 20247-20256 ◽  
Author(s):  
A. V. Anupama ◽  
V. B. Khopkar ◽  
V. Kumaran ◽  
B. Sahoo

The magneto-rheological behaviour of fluids containing soft-ferrimagnetic Fe3O4 micro-octahedrons (M = magnetization, τY = dynamic yield-stress and H = applied-magnetic-field).


1968 ◽  
Vol 5 (4) ◽  
pp. 825-829 ◽  
Author(s):  
F. E. M. Lilley ◽  
C. M. Carmichael

The passage of an elastic wave causes straining and translation in the transmitting material. If a magnetic field is applied, and the medium is an electrical conductor, some of the energy of the wave is dissipated by the flow of electrical eddy currents. Usually the amount of energy lost is very small, but it may be greatly increased if the applied field is strongly non-uniform.Laboratory experiments are described which demonstrate this effect for standing elastic waves in a metal bar. The applied magnetic field changes from almost zero to its full strength over a distance which is short compared to the length of the standing wave. The result of this strong non-uniformity is that the energy lost due to the translation of the bar in the field greatly exceeds the energy lost due to the straining of the bar in the field.The dependence of the attenuation of the waves by the magnetic field is investigated for variation in frequency of vibration, bar thickness, and field gradient.


Sign in / Sign up

Export Citation Format

Share Document