Treating Disperse Dye Wastewater with Organic Clay

2014 ◽  
Vol 977 ◽  
pp. 279-284
Author(s):  
Li Xuan Wang ◽  
Yan Kun Cheng ◽  
Peng Huo ◽  
Ya Nan Gao

The adsorption of disperse dye wastewater with organic clay by static tests is studied, Meanwhile, the composition of wastewater is analyzed by means of FT-IR,and organic clay is analyzed by means of XRD. The effect of pH , dosing quantity and concentration of wastewater on the efficiency of adsorption has been studied, and the relationship between the equilibrium concentration and adsorption capacity is concluded. In the end, the adsorption mechanism is preliminary discussed.

2021 ◽  
Vol 43 (4) ◽  
pp. 436-436
Author(s):  
Nida Shams Jalbani Nida Shams Jalbani ◽  
Amber R Solangi Amber R Solangi ◽  
Shahabuddin Memon Shahabuddin Memon ◽  
Ranjhan Junejo Ranjhan Junejo ◽  
Asif Ali Bhatti Asif Ali Bhatti

In current study, the diphenylaminomethylcalix[4]arene (3) was synthesized and immobilized onto silica surface to prepare a selective, regenerable and stable resin-4. The synthesized resin-4 has been characterized by FT-IR spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDX) and Brunauer-Emmett-Teller (BET) techniques. To check the adsorption capacity of resin-4, the batch and column adsorption methodology were applied and it has observed that the resin-4 was selectively removed Hg2+ ions under the optimized parameters. The maximum adsorption capacity was obtained at pH 9 using 25 mg/L of resin-4. Under the optimal conditions, different equilibrium, kinetic and thermodynamic models were applied to experimental data. The results show that adsorption mechanism is chemical in nature following Langmuir model with good correlation coefficient (R2=0.999) and having 712.098 (mmol/g) adsorption capacity. The energy of calculated from D-R model suggests the ion exchange nature of the adsorption phenomenon. Dynamic adsorption experiments were conducted using Thomas model. The maximum solid phase concentration (qo) was 7.5 and rate constant was found to be 0.176 with (R2=0.938) for Hg2+ ions. The kinetic study describes that the adsorption mechanism follows pseudo second order (R2=0.999). The thermodynamic parameters such as ∆H (0.032 KJ/mol) and ∆S (0.127 KJ/mol /K) and ∆G (-5.747,-6.306, -7.027 KJ/mol) shows that the adsorption of Hg2+ ion is endothermic and spontaneous. The reusability of resin-4 was also checked and it has observed that the after 15 cycle only 1.2 % adsorption reduces. Moreover, the resin-4 was applied on real wastewater samples obtained from local industrial zone of Karachi, Sindh-Pakistan.


2012 ◽  
Vol 560-561 ◽  
pp. 482-487 ◽  
Author(s):  
Zhan Xin Jing ◽  
Xiao Feng Sun ◽  
Qing Ye ◽  
Ya Jing Li

Hemicellulose-based porous hydrogel for methylene blue adsorption from aqueous solution was studied. The surface morphology of sample was analyzed by SEM, finding that it had the porous structure. Effects of pH and initial concentration on the adsorption capacity were investigated. Isotherm studies found that the adsorption of metylene blue onto absorbent was a monolayer adsorption, and the maximum adsorption capacity was 444.44 mg/g. The adsorption mechanism was analyzed by FT-IR, and it showed that the produced -COO- groups in alkaline conditions were advantaged for adsorption process, which offers the impetus for combination of adsorbent and methylene blue. Hemicellulose-based porous hydrogel is an inexpensive and biodegradable material, and can be a promising absorbent for cationic removing from wastewater.


2018 ◽  
Vol 4 (10) ◽  
pp. 1671-1684 ◽  
Author(s):  
Ting Li ◽  
Taiwan Liao ◽  
Xiangde Su ◽  
Xiang Yu ◽  
Boping Han ◽  
...  

We prepared a series of novel and efficient phosphate removal adsorbents, figured out the adsorption mechanism in depth and revealed the relationship between the properties of adsorbents and their adsorption capacity.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Beifeng Lv ◽  
Wenjie Yu ◽  
Jiale Luo ◽  
Biao Qian ◽  
Mulugeta Belete Asefa ◽  
...  

To remove graphene oxide from wastewater, we used batch experiments with calcareous sand to recover GO. The adsorption properties and mechanisms of GO by calcareous sand were investigated by different characterization techniques. In this paper, the relationship between the coagulation of GO on calcareous sand and pH, calcareous sand content, GO initial concentration, and temperature was studied. The results show that calcareous sand can effectively adsorb GO from aqueous solution, the interaction of GO with calcareous sand achieved interaction equilibrium in 5 h, and the adsorption of GO by calcareous sand strongly depends on pH. The isotherm data fitted to a Langmuir equation. A possible mechanism can be expressed from FT-IR, XRD, Raman spectra, SEM, EDS, TEM, AFM, and XPS results. The test results indicate that calcareous sand is a potentially recoverable GO material.


Author(s):  
Liling Cho ◽  
David L. Wetzel

Polarized infrared microscopy has been used for forensic purposes to differentiate among polymer fibers. Dichroism can be used to compare and discriminate between different polyester fibers, including those composed of polyethylene terephthalate that are frequently encountered during criminal casework. In the fiber manufacturering process, fibers are drawn to develop molecular orientation and crystallinity. Macromolecular chains are oriented with respect to the long axis of the fiber. It is desirable to determine the relationship between the molecular orientation and stretching properties. This is particularly useful on a single fiber basis. Polarized spectroscopic differences observed from a single fiber are proposed to reveal the extent of molecular orientation within that single fiber. In the work presented, we compared the dichroic ratio between unstretched and stretched polyester fibers, and the transition point between the two forms of the same fiber. These techniques were applied to different polyester fibers. A fiber stretching device was fabricated for use on the instrument (IRμs, Spectra-Tech) stage. Tension was applied with a micrometer screw until a “neck” was produced in the stretched fiber. Spectra were obtained from an area of 24×48 μm. A wire-grid polarizer was used between the source and the sample.


Author(s):  
Joshua O. Ighalo ◽  
Ibrahim O. Tijani ◽  
Oluwaseun J. Ajala ◽  
Fisayo O. Ayandele ◽  
Omodele A. Eletta ◽  
...  

Background: Modified bio-based adsorbents from plant sources can be used for pollution remediation by adsorption due to their low cost and availability in large quantities. Objective: In this study, the competitive biosorption of Pb(II) and Cu(II) by Micropogonias undulates functionalised fish scales (FFS) was conducted. The functionalisation was done by wet impregnation with Fe2+. Method: The biosorbent was characterised by Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (SEM-EDS) and Branueur–Emmett–Teller (BET) analyses. Results: The major constituents in the FFS were calcium and phosphorus from the collagen and apatite on the scales. Optimum removal efficiency for both metals was >99% at 10 g/l dosage. It was observed that the Langmuir isotherm model and the pseudo second order kinetics model were the best fit for the experimental data. The monolayer adsorption capacity of FFS for Pb(II) and Cu(II) was observed to be 96.15 mg/g and 100 mg/g respectively. Conclusion: The study revealed that the competitive biosorption of heavy metals can be achieved (at a good adsorption capacity) using functionalised Micropogonias undulates fish scales.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2741
Author(s):  
Pengcheng Lv ◽  
Ruihong Meng ◽  
Zhongyang Mao ◽  
Min Deng

In this study, the hydrated sodium aluminosilicate material was synthesized by one-step hydrothermal alkaline desilication using fly ash (FA) as raw material. The synthesized materials were characterized by XRD, XRF, FT-IR and SEM. The characterization results showed that the alkali-soluble desilication successfully had synthesized the sodium aluminosilicate crystalline (N-A-S-H) phase of sodalite-type (SOD), and the modified material had good ionic affinity and adsorption capacity. In order to figure out the suitability of SOD as an adsorbent for the removal of ammonium and phosphorus from wastewater, the effects of material dosing, contact time, ambient pH and initial solute concentration on the simultaneous removal of ammonium and phosphorus are investigated by intermittent adsorption tests. Under the optimal adsorption conditions, the removal rate of ammonium was 73.3%, the removal rate of phosphate was 85.8% and the unit adsorption capacity reached 9.15 mg/L and 2.14 mg/L, respectively. Adsorption kinetic studies showed that the adsorption of ammonium and phosphorus by SOD was consistent with a quasi-secondary kinetic model. The adsorption isotherm analysis showed that the equilibrium data were in good agreement with the Langmuir and Freundlich model. According to thermodynamic calculations, the adsorption of ammonium and phosphorus was found to be a heat-absorbing and spontaneous process. Therefore, the preparation of SOD by modified FA has good adsorption properties as adsorbent and has excellent potential for application in the removal of contaminants from wastewater.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1136 ◽  
Author(s):  
Qiang Li ◽  
Fei Pan ◽  
Wentao Li ◽  
Dongya Li ◽  
Haiming Xu ◽  
...  

In this study, a novel 2-vinylpyridine functionalized magnetic nanoparticle (Mag-PVP) was successfully prepared. The prepared Mag-PVP was characterized by transmission electronic microscopy (TEM), Fourier transform infrared spectrophotometry (FT-IR), vibrating sample magnetometry (VSM) and thermogravimetric analysis (TGA), and was used for the adsorption of bisphenol A (BPA) from aqueous solutions. Mag-PVP, which is composed of Fe3O4 nanoparticles and poly divinylbenzene-2-vinylpyridine (with a thickness of 10 nm), exhibited magnetic properties (Ms = 44.6 emu/g) and thermal stability. The maximum adsorption capacity (Qm) of Mag-PVP for BPA obtained from the Langmuir isotherm was 115.87 mg/g at 20 °C, which was more than that of Fe3O4 nanospheres. In the presence of NaCl, the improved adsorption capacity of Mag-PVP was probably attributed to the screening effect of Mag-PVP surface charge and salting-out effect. In the presence of CaCl2 and humic acid (HA), the adsorption capacity of BPA decreased due to competitive adsorption. The adsorption of BPA by Mag-PVP increased slightly with the increase in pH from 3.0 to 5.0 and obtained the largest adsorption amount at pH 5.0, which was probably attributed to hydrogen bonding interactions. Moreover, in actual water, Mag-PVP still showed excellent adsorption performance in removing BPA. The high adsorption capacity and excellent reusability performance in this work indicated that Mag-PVP was an effective adsorbent for removing BPA from aqueous solutions.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4066
Author(s):  
Xianyuan Fan ◽  
Hong Liu ◽  
Emmanuella Anang ◽  
Dajun Ren

The adsorption capacity of synthetic NaX zeolite for Pb2+, Cd2+, Cu2+ and Zn2+ in single and multi-component systems were investigated. The effects of electronegativity and hydration energy on the selective adsorption, as well as potential selective adsorption mechanism of the NaX zeolite for Pb2+, Cd2+, Cu2+ and Zn2+ were also discussed. The maximum adsorption capacity order of the heavy metals in the single system was Pb2+ > Cd2+ > Cu2+ > Zn2+, and this could be related to their hydration energy and electronegativity. The values of the separation factors (α) and affinity constant (KEL) in different binary systems indicated that Pb2+ was preferentially adsorbed, and Zn2+ presented the lowest affinity for NaX zeolite. The selective adsorption capacities of the metals were in the order, Pb2+ > Cd2+ ≈ Cu2+ > Zn2+. The trend for the selective adsorption of NaX zeolite in ternary and quaternary systems was consistent with that in the binary systems. Pb2+ and Cu2+ reduced the stability of the Si-O-Al bonds and the double six-membered rings in the NaX framework, due to the high electronegativity of Pb2+ and Cu2+ than that of Al3+. The selective adsorption mechanism of NaX zeolite for the high electronegative metal ions could mainly result from the negatively charged O in the Si-O-Al structure of the NaX zeolite, hence heavy metal ions with high electronegativity display a strong affinity for the electron cloud of the oxygen atoms in the Si-O-Al. This study could evaluate the application and efficiency of zeolite in separating and recovering certain metal ions from industrial wastewater.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3718
Author(s):  
Mohammad Azam ◽  
Saikh Mohammad Wabaidur ◽  
Mohammad Rizwan Khan ◽  
Saud I. Al-Resayes ◽  
Mohammad Shahidul Islam

The aim of the research was to prepare low-cost adsorbents, including raw date pits and chemically treated date pits, and to apply these materials to investigate the adsorption behavior of Cr(III) and Cd(II) ions from wastewater. The prepared materials were characterized using SEM, FT-IR and BET surface analysis techniques for investigating the surface morphology, particle size, pore size and surface functionalities of the materials. A series of adsorption processes was conducted in a batch system and optimized by investigating various parameters such as solution pH, contact time, initial metal concentrations and adsorbent dosage. The optimum pH for achieving maximum adsorption capacity was found to be approximately 7.8. The determination of metal ions was conducted using atomic adsorption spectrometry. The experimental results were fitted using isotherm Langmuir and Freundlich equations, and maximum monolayer adsorption capacities for Cr(III) and Cd(II) at 323 K were 1428.5 and 1302.0 mg/g (treated majdool date pits adsorbent) and 1228.5 and 1182.0 mg/g (treated sagai date pits adsorbent), respectively. It was found that the adsorption capacity of H2O2-treated date pits was higher than that of untreated DP. Recovery studies showed maximal metal elution with 0.1 M HCl for all the adsorbents. An 83.3–88.2% and 81.8–86.8% drop in Cr(III) and Cd(II) adsorption, respectively, were found after the five regeneration cycles. The results showed that the Langmuir model gave slightly better results than the Freundlich model for the untreated and treated date pits. Hence, the results demonstrated that the prepared materials could be a low-cost and eco-friendly choice for the remediation of Cr(III) and Cd(II) contaminants from an aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document