Beneficiation of Iron with Magnetic Separators

2014 ◽  
Vol 978 ◽  
pp. 44-47
Author(s):  
Kai Hou ◽  
Xiong Tong ◽  
Xian Xie ◽  
Bo Yang

Research on beneficiation of iron from iron-polymetallic was conducted according to the properties of the ore. The separation results show that magnetic separation is the best way to concentrate the iron mineral. The results show that iron concentrate assaying 60.15% Fe can be obtained with the recovery of 76.48%.

Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 352 ◽  
Author(s):  
Junhui Xiao ◽  
Wei Ding ◽  
Yang Peng ◽  
Tao Chen ◽  
Kai Zou ◽  
...  

In this study, segregation roasting and magnetic separation are used to extract nickel from a garnierite laterite ore. The garnierite laterite ore containing 0.72% Ni, 0.029% Co, 8.65% Fe, 29.66% MgO, and 37.86% SiO2 was collected in the Mojiang area of China. Garnierite was the Ni-bearing mineral; the other main minerals were potash feldspar, forsterite, tremolite, halloysite, quartz, and kaolinite in the garnierite laterite ore. The iron phase transformations show that nickel is transformed from (Ni,Mg)O·SiO2·nH2O to a new nickel mineral phase dominated by [Ni]Fe solid solution; and iron changed from Fe2O3 and FeOOH to a new iron mineral phase dominated by metal Fe and Fe3O4 after segregation roasting. Ferronickel concentrate with Ni of 16.16%, Fe of 73.67%, and nickel recovery of 90.33% was obtained under the comprehensive conditions used: A roasting temperature of 1100 °C, a roasting time of 90 min, a calcium chloride dosage of 15%, an iron concentrate dosage of 30%, a coke dosage of 15%, a coke size of −1 + 0.5 mm, a magnetic separation grinding fineness of <45 μm occupying 90%, and a magnetic separation magnetic field intensity of H = 0.10 T. The main minerals in ferronickel concentrate are Fe, [Ni]Fe, Fe3O4, and a small amount of gangue minerals, such as CaO·SiO2 and CaO·Al2O3·SiO2.


2015 ◽  
Vol 1094 ◽  
pp. 397-400
Author(s):  
Xian Xie ◽  
Zi Xuan Yang ◽  
Xiong Tong ◽  
Ji Yong Li

Iron ore minerals are mainly silicate-type iron minerals in raw ore, and its distribution rate was 51.93%; followed by magnetic iron, and its distribution rate was 36.81%; content and distribution rate of other minerals was very low; element grade of iron, phosphorus, sulfur, silica were 11.90%, 0.043%, 0.013% and 45.23%, the main gangue were silica and calcium oxide, recyclable iron minerals mainly is magnetic iron mineral. Due to the grade of iron of raw ore and the amounts of optional magnetite was relatively little, in order to investigate the optional of low-grade ore, weak magnetic separation test and weak magnetic separation tailings-strong magnetic separation test were put into effect.


2013 ◽  
Vol 734-737 ◽  
pp. 1029-1032 ◽  
Author(s):  
Jiang An Chen ◽  
Jun Liu

Considered the properties of limonite ore at Jiangxi, the raw ore pressing ball - direct reduction - magnetic separation flowsheet have been adopted. the pressing ball conditions, the influence factors and the grinding magnetic separation conditions experiments were carried out. The results shown that: When the dosage of coal was 20%, water was 10%, CMC was 0.5%, pressing ball under the pressure of 190 kN, the calcination temperature was 1100 °C, the roasting time is 50 min, roasted ore were magnetic separated after grinded to 85% through 200 mesh screen. the iron concentrate grade of 92.48% and recovery rate of 93.45% were achieved finally.


2012 ◽  
Vol 577 ◽  
pp. 183-186
Author(s):  
Si Qing Liu ◽  
Xiong Tong ◽  
Jian Yang ◽  
Jia Gui You

Large amount of surrounding rocks in Jianshui China has been discarded for many years, and the “rock” is characterized by Cu-Fe poly-metallic constituents and of low grade. A joint process of flotation and magnetic separation was proposed to process the ore. This paper introduces the test results of flotation tailings by a wet drum separator. Results show that iron concentrate assaying 60.21-68.12% Fe at a recovery of 71.9-75.32% can be obtained, when the flotation tailings assays 33.91%Fe. At the same time, a joint process has put forward to make full utilize the “rock”.


2012 ◽  
Vol 622-623 ◽  
pp. 494-499
Author(s):  
Xiao Wang ◽  
Xiong Tong ◽  
Zheng Bin Deng ◽  
Yong Cheng Zhou ◽  
Xian Xie

In this study, the main aim was to recovery the gold from iron tailings, and comprehensive recovery of iron by using combined separating technology. Experimental studies were carried out on the iron tailings in Dahongshan samples, which contain 0.5g/t of gold and 16.8% of iron. Through the experiment, the first is pre-discarding tailings by centrifuge, and then the gold is recovered by cyanidation leaching with using of H2O2 to increase the rate of gold dissolution. The gold’s leaching rate can reach 97.60%. The qualified iron concentrate can be got from leaching slag and gravity tailings by magnetic separation. Iron tailings get a comprehensive utilization, which has a better effect.


2011 ◽  
Vol 347-353 ◽  
pp. 157-162
Author(s):  
Jun Liu ◽  
Jiang An Chen

Recovering valuable metal from tailings has always been one of national resource comprehensive utilization key research subjects. There are copper-bearing magnetite which contains 43.31% of iron and 0.21% of copper in some places. After grinding-low intensity magnetic separation-flotation process can get 68.87% of iron concentrate with recovery 64.39% and copper concentrate which contain copper 12.67% with recovery of 75.30%. The experiment results will provide an effective way to comprehensive utilize the resource in one area.


2013 ◽  
Vol 734-737 ◽  
pp. 1001-1005
Author(s):  
Jin Xia Zhang ◽  
Miao Chen ◽  
Fu Sheng Niu ◽  
Li Li

Through the analysis and study the properties, characteristics and present conditions of the flue slime of blast furnace, a suggestion was made of recovering carbon and iron concentrate from the flue dust using a beneficiation technology consisting of magnetic separation-gravity separation-flotation. The laboratory test achieved good technical and economical results, reaching the expected effect. The technology can be applied in production and popularized.


2012 ◽  
Vol 535-537 ◽  
pp. 742-745
Author(s):  
Wei Zhi Wang ◽  
Qing Mei Jia ◽  
Chun Guang Yang

Laboratory research on the mineral processing technique of a specularite ore from Baxi was performed, while the processes including gravity separation, low intensity magnetic separation(LIMS) -high intensity magnetic separation(HIMS)-gravity separation was adopted. The run-of-mine ore was milled till the -0.074 mm range accounts for 50% and treated through a LIMS – HIMS process, with the magnetic field strength of LIMS being 95.52 kA/m and HIMS,1.2T. As a result, an iron concentrate grading about 67.58% at a recovery of 96.21% can be obtained, which are rather good metallurgical performances. The iron concentrate with high grade also could be beneficiated by table separation, but its recovery is lower than it obtained from intensive LIMS – HIMS dressing.


2011 ◽  
Vol 304 ◽  
pp. 387-390 ◽  
Author(s):  
Wei Zhi Wang ◽  
Jin Rui Zhang ◽  
Chun Guang Yang

An iron ore contains specularite and hematite which are its main iron minerals. And its main gangue minerals are specularite, part of the clay material and a small amount of quartz.Tests are made on the ore by adopting processes including gravity separation, high intensity magnetic separation, high intensity magnetic-gravity separation and high intensity magnetic - reverse flotation. The test results show that the separation process of high intensity magnetic-reverse flotation can obtain an iron concentrate grading about 66.62% at a recovery of 58.38% from an iron ore assaying around 35.00% iron, rather good metallurgical performances.


Author(s):  
I. Mitov ◽  
A. Stoilova ◽  
B. Yordanov ◽  
D. Krastev

SYNOPSIS We present three technological scenarios for the recovery of valuable components from gangue, stored in the tailings dam at Kremikovtzi metallurgical plant in Bulgaria, into marketable iron-containing pellets. In the first approach the iron concentrate was recovered through a two-stage flotation process, desliming, and magnetic separation. In the second proposed process, the iron concentrate was subjected to four sequential stages of magnetic separation coupled with selective magnetic flocculation. The third route entails the not very common practice of magnetizing roasting, followed by selective magnetic flocculation, desliming, and magnetic separation. The iron concentrate was pelletized in a laboratory-scale pelletizer. Each technology has been assessed with regard to the mass yield of iron concentrate, the iron recovery. and the iron, lead, and zinc content in order to identify the most effective route. Keywords: tailings reprocessing, magnetizing roasting, pelletization.


Sign in / Sign up

Export Citation Format

Share Document