Yellowish-Brown Pigment with High near Infrared Reflective

2014 ◽  
Vol 979 ◽  
pp. 102-106
Author(s):  
Thadsanee Thongkanluang ◽  
Jantharat Wutisatwongkul ◽  
Prayoon Surin

Yellowish-brown inorganic pigments having a high near infrared solar reflectance have been synthesized. In this research, Fe2O3 was used as the host component, whereas, the mixtures of Sb2O3, SiO2, Al2O3, and TiO2 were used as the guest components. The guest components were investigated over a range of 36 different compositions. The results showed that the pigment, denoted by YB32, with a composition of Fe2O3, Sb2O3, SiO2, Al2O3, and TiO2 of 65, 15, 10, 2 and 8 wt.% respectively, generated a maximum near infrared solar reflectance of 40.8% while the YB3 pigment was found to have a minimum reflectance of 29.3%. The CIE L*a*b* colour index was used to measure the yellowish-brown pigment colours. The YB32 and YB3 pigment powders were also characterized by powder X-ray diffraction technique. It was found that the YB3 powder developed a new phase, FeSb2O3, which is mainly responsible for the decrease in the near infrared solar reflectance.

2012 ◽  
Vol 602-604 ◽  
pp. 102-106 ◽  
Author(s):  
Xiao Yu Zhang ◽  
Yu Jun Zhang ◽  
Hong Yu Gong ◽  
Xin Qiao Zhao ◽  
Cui Ling Wang ◽  
...  

Novel high near-infrared reflecting inorganic pigments Y6-xSmxMoO12+σ (03+ in yttrium molybdate through a simple solid-state reaction method. The composites were characterized using scanning electron microscope, X-ray diffraction, UV-vis-NIR spectrophotometer and CIE 1976 L*a*b* color scales. The substitution of Sm3+ for Y3+ in Y6MoO12 changed the color from bright yellow to dark yellow and most importantly increased near-infrared reflectance in the wavelength range of 700-2500 nm. The chemical stability of the pigments was also evaluated.


1996 ◽  
Vol 11 (1) ◽  
pp. 26-27 ◽  
Author(s):  
Irena Georgieva ◽  
Ivan Ivanov ◽  
Ognyan Petrov

A new compound—Ba3MnSi2O8 in the system BaO–MnO–SiO2 was synthesized and studied by powder X-ray diffraction. The compound is hexagonal, space group—P6/mmm, a=5.67077 Å, c=7.30529 Å, Z=1, Dx=5.353. The obtained powder X-ray diffractometry (XRD) data were interpreted by the Powder Data Interpretation Package.


1973 ◽  
Vol 28 (9-10) ◽  
pp. 600-605 ◽  
Author(s):  
Karl-Friedrich Tebbe ◽  
Hans Georg Schnering ◽  
Barbara Rüter ◽  
Gisela Rabeneck

Besides ‘Li2Al’ which was recently shown to be the phase Li9Al4 there exists the phase Li3Al2 characterized by preparation and X-ray diffraction methods. It cristallizes with a rhomboedric unit cell, R3̄m, a = 4.508 Å, c = 14.26 Å and z = 3 formula units (hexagonal setting). The structure can be looked at as a variant of the body centred cubic packing with Αl-atom layers of puckered six membered rings. The structural relation of the phases LiAl, Li3Al2, Li9Al4, Li is discussed.


2018 ◽  
Vol 766 ◽  
pp. 127-132
Author(s):  
Chumphol Busabok ◽  
Wasana Khongwong ◽  
Phunthinee Somwongsa ◽  
Piyalak Ngernchuklin ◽  
Arunrat Saensing ◽  
...  

Reflective pigment was prepared by using Fe2O3 and Al2O3 as starting materials. Fe2O3 and Al2O3 powders were mixed at 0.8:2, 1:2 and 1.2:2 mole ratio using ball milling. The mixed powders were dried and calcined at temperature of 1500°C, 1600°C and 1700°C for various soaking time at 2, 8 and 20 h. Phase data were analyzed by x-ray diffractometry. It was found that (Al1-x, Fex)2O3 presented as a new phase in calcined powders at temperature of 1500°C to 1700°C for 2 h. The other new phase such as FeAl2O4 was detected in calcined powders at temperature of 1700°C for 8 and 20 h. From the experimental results indicated that complete reaction was occurred when higher calcination temperature and longer soaking time were used, resulting in spinel structure (FeAl2O4) generated. Then, the synthesized powders were mixed with exterior paint by mass ratio of 0:100, 10:90, 20:80, 30:70 and 40:60, respectively. The mixed paints were sprayed on metal sheets. Then the coated metal sheets were exposed under 200 watts lamb and measured the temperature difference between the exposed side and opposite side. The result showed that at the ratio of 30:70 exhibited the highest temperature difference of 14°C approximately. From the result, we concluded that spinel structure (FeAl2O4) is a candidate for near-infrared (NIR) reflective pigment of exterior paint.


2016 ◽  
Vol 34 (2) ◽  
pp. 437-445 ◽  
Author(s):  
Sumit K. Roy ◽  
S. Chaudhuri ◽  
R.K. Kotnala ◽  
D.K. Singh ◽  
B.P. Singh ◽  
...  

AbstractIn this work the X-ray diffraction, scanning electron microscopy, Raman and dielectric studies of lead free perovskite (1 – x)Ba0.06(Na1/2Bi1/2)0.94TiO3–xNaNbO3 (0 ⩽ x ⩽ 1.0) ceramics, prepared using a standard solid state reaction method, were investigated. X-ray diffraction studies of all the ceramics suggested the formation of single phase with crystal structure transforming from rhombohedral-tetragonal to orthorhombic symmetry with the increase in NaNbO3 content. Raman spectra also confirmed the formation of solid solution without any new phase. Dielectric studies showed that the phase transition is of diffusive character and diffusivity parameter decreases with increasing NaNbO3 content. The compositional fluctuation was considered to be the main cause of diffusivity.


1970 ◽  
Vol 14 ◽  
pp. 67-77 ◽  
Author(s):  
P. Krishna ◽  
R. C. Marshall

AbstractThis paper reports the results of a detailed X-ray diffraction study of a new phase-transformation observed in SiC crystals grown by a vapour-liquid-solid mechanism involving the hydrogen-reduction of methyltrichlorosilane. The 10.ℓ reciprocal lattice rows of these crystals, as recorded on X-ray diffraction photographs, reveal sharp reflections corresponding to the hexagonal close-packed 2H (ABAB….) structure and sometimes also corresponding to the cubic close-packed 3C (ABCABC…) structure. These reflections are invariably connected by a diffuse but continuous streak whose intensity is a measure of the random faulting on the basal planes. The crystals were needle shaped and the structure sometimes varied along their length.Several crystals were annealed in an inert atmosphere at progressively higher temperatures and their 10.ℓ reciprocal lattice row re-examined to determine the annealing behaviour as well as possible structural transformations. For a number of dark green needles having a faulted 2H structure the 2H reflections disappeared around 1400° C and the 10.ℓ reciprocal lattice row revealed only a continuous streak with increased intensity around positions for 3C reflections. On further heating the structure went over to a strongly faulted 3C. Around 1600°C the appearance of a 6H structure became discernible while highly diffuse 30 reflections still persisted. The reversible part of the transformations, if any, could not be observed. Some of the structures were, however, found to be much more stable and did not transform even up to 1650° C.The above results, in particular the discovery of a 2H-3C phase-transformation around 1400°C, throw fresh light on the thermodynamic stability of the different SiC types. The mechanism of the 2H-3C transformation, the possible influence of faults and impurities and the thermal stability of various SiC structures are discussed on the basis of the experimental results stated above.


2004 ◽  
Vol 848 ◽  
Author(s):  
Olivier Durupthy ◽  
Saïd Es-salhi ◽  
Nathalie Steunou ◽  
Thibaud Coradin ◽  
Jacques Livage

ABSTRACTVarious cations (Li+, Na+, K+, NH4+, Cs+, Mg2+, Ca2+, Ba2+) were introduced during the formation of a V2O5. nH2O gel. Cation intercalated Xy V2O5. nH2O (y = 0.3 for X = Li+, Na+, K+, NH4+ or y = 0.15 for Mg2+, Ca2+, Ba2+) were first obtained at room temperature but some of them evolve upon ageing into a new phase: XV3O8. nH2O for X = Na+, K+, NH4+ and Cs+ or XV6O16. nH2O for X = Mg2+, Ca2+, Ba2+. All the vanadium oxide phases were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and infrared spectroscopy (IR); the supernatant solutions were analysed by 51V NMR spectroscopy. These vanadium oxide phases exhibit a layered structure with cations and water molecules intercalated within the interlayer space. The formation of the different phases depends mainly on the pH of the supernatant solution and on the nature of the cation.


2003 ◽  
Vol 18 (4) ◽  
pp. 288-292 ◽  
Author(s):  
H. Chaker ◽  
A. Kabadou ◽  
M. Toumi ◽  
R. Ben Hassen

Powder X-ray diffraction (XRD) data were collected for a new phase of SrGd2O4. Analysis using the Rietveld method was carried out and it was found that the sample crystallizes in the orthorhombic symmetry with CaFe2O4 related structure. The lattice parameters are found to be a=12.0521(2) Å, b=10.1327(2) Å, c=3.4757(4) Å and Z=4. For X-ray data RF=4.9%, RB=7.6%, RP=8.1% and χ2=1.51. The structure can be described as an assembly of bioctahedron [Gd2O10] which are linked together by O2− anions and of dodecahedron of SrO8.


2013 ◽  
Vol 316-317 ◽  
pp. 1059-1062 ◽  
Author(s):  
Ping Chen ◽  
Ming Sheng Qin ◽  
Fu Qiang Huang

The Formation of Heterojunction Structure between Two Semiconductors Was Considered as an Effective Method to Enhance the Photocatalytic Activity. here, we Reported a Simple Method to Prepare SnS2/SnO2Heterojunction Photocatalysts by Annealing SnS2in Air. the Structure, Morphology, Chemical Compositions and Optical Properties of the Obtained Materials Were Characterized by the X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Energy-dispersive X-ray Spectroscopy (EDX) and Ultraviolet-visible-near Infrared (UV-Vis-NIR) Absorption Spectra. the Photocatalytic Investigations Showed the Composites Have Higher Photocatalytic Activity than the Single-phase SnS2. the SnS2Powder which Annealed at 400 °C for 60 Min Showed the Highest Photocatalytic Performance.


2014 ◽  
Vol 881-883 ◽  
pp. 1431-1434
Author(s):  
Jun Qian ◽  
Man Liu ◽  
Yi Hua Zhou ◽  
Tao Lin Ma ◽  
Zi Qiang Zhu ◽  
...  

nanoTiO2 is one of the most important inorganic pigments in many different fields. The effect of sinter and thermoprint on film-forming properties of nanoTiO2 in screen printing were studied in this paper. Compared with sintering, Thermoprint uses high temperature and pressure to make nanoparticles more tight. By scanning electron microscopy (SEM), X-ray diffraction (XRD) and Coating Adhesion Test, the better film-formation properties of thermoprint are demonstrated.


Sign in / Sign up

Export Citation Format

Share Document