London Penetration Depth of Fe-Based Superconductors

2014 ◽  
Vol 979 ◽  
pp. 297-301 ◽  
Author(s):  
Arpapong Changjan ◽  
Pongkaew Udomsamuthirun

Superconductivity is a phenomenon of exactly zero electrical resistance and expulsion of magnetic fields occurring in certain materials when cooled below a characteristic critical temperature. Fe-based superconductors are superconductors whose containing iron compounds and having a very high critical magnetic field. London penetration depth can assist in the study of the behavior of the critical magnetic field. The London penetration depth is the distance to which a magnetic field penetrates into a superconductor and becomes equal to 0.367879 times that of the magnetic field at the surface of the superconductor. In this paper, the London penetration depth of Fe-based superconductors is studied by Ginzburg-Landau scenery. Free energy of Fe-based superconductors is assumed by modified the free energy of two-band magnetic superconductors model and theof Fe-based superconductors is derived analytically. Finally, the temperature dependence of is investigated and applied to Single-Crystal superconductors.

2013 ◽  
Vol 770 ◽  
pp. 291-294 ◽  
Author(s):  
N. Niyomsilpchai ◽  
A. Changjan ◽  
Pongkaew Udomsamuthirun

The London penetration depth is the distance to which a magnetic field penetrates into a superconductor and becomes equal to 0.367879 times that of the magnetic field at the surface of the superconductor. The type 1.5 superconductor is the new type of superconductor that the value of Ginzburg-Landau parameter is between the type I and type II superconductor. In this paper, the London penetration depth of type 1.5 superconductor is studied by Ginzburg-Landau approach. The system of free energy of type 1.5 superconductor is assumed by modified the free energy of two-band model and theof type 1.5 superconductor is derived analytically. Finally, the temperature dependence of London penetration depth is investigated.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Tsadik Kidanemariam ◽  
Gebregziabher Kahsay

This research work focuses on the theoretical investigation of the upper critical magnetic field,HC2; Ginzburg-Landau coherence length,ξGL(T); and Ginzburg-Landau penetration depth,λGL(T), for the two-band iron based superconductorsBaFe2(As1-xPx)2,NdO1-xFxFeAs, and LiFeAs. By employing the phenomenological Ginzburg-Landau (GL) equation for the two-band superconductorsBaFe2(As1-xPx)2,NdO1-xFxFeAs, and LiFeAs, we obtained expressions for the upper critical magnetic field,HC2; GL coherence length,ξGL; and GL penetration depth,λGL, as a function of temperature and the angular dependency of upper critical magnetic field. By using the experimental values in the obtained expressions, phase diagrams of the upper critical magnetic field parallel,HC2∥c, and perpendicular,HC2⊥c, to the symmetry axis (c-direction) versus temperature are plotted. We also plotted the phase diagrams of the upper critical magnetic field,HC2versus the angleθ. Similarly, the phase diagrams of the GL coherence length,ξGL, and GL penetration depth,λGL, parallel and perpendicular to the symmetry axis versus temperature are drawn for the superconductors mentioned above. Our findings are in agreement with experimental observations.


1992 ◽  
Vol 06 (03) ◽  
pp. 161-169 ◽  
Author(s):  
K.I. KUGEL ◽  
T. YU. LISOVSKAYA ◽  
R.G. MINTS

We study the dependence of critical current j c on magnetic field H in superconducting polycrystals which are considered as systems of superconducting crystallites (isotropic or anisotropic) with Josephson contacts between them. Isotropy or anisotropy of contacts depends on the orientation of their crystallographic axes relatively to edges of contact planes. It is shown that for a system of randomly oriented isotropic contacts, the dependence j c (H) in a relatively wide field range has the asymptotic form j c ~( ln H)/H2. This differs drastically from j c (H) for single contacts. Anisotropy effects due to large differences in London penetration depth λ values corresponding to external magnetic field directed along different axes are analyzed in detail. It is shown that for uniaxal crystals with λ1=λ2≪λ3, this anisotropy leads to the relation [Formula: see text] for chaotic orientation of crystallites. The form of j c (H) curves for two different orientations of the magnetic field relatively to the transport current through the sample is found.


2002 ◽  
Vol 12 (9) ◽  
pp. 389-389
Author(s):  
W. G. Clark ◽  
F. Zamborsky ◽  
B. Alavi ◽  
P. Vonlanthen ◽  
W. Moulton ◽  
...  

We report proton NMR measurements of the effect of very high magnetic fields up to 44.7 T (1.9 GHz) on the spin density wave (SDW) transition of the organic conductor TMTSF2PF6. Up to 1.8 GHz, no effect of critical slowing close to the transition is seen on the proton relaxation rate (1/T1), which is determined by the SDW fluctuations associated with the phase transition at the NMR frequency. Thus, the correlation time for such fluctuations is less than $1O^{-10}$s. A possible explanation for the absence of longer correlation times is that the transition is weakly first order, so that the full critical divergence is never achieved. The measurements also show a dependence of the transition temperature on the orientation of the magnetic field and a quadratic dependence on its magnitude that agrees with earlier transport measurements at lower fields. The UCLA part of this work was supported by NSF Grant DMR-0072524.


2019 ◽  
Vol 116 (16) ◽  
pp. 7873-7878 ◽  
Author(s):  
Rafael Tapia-Rojo ◽  
Edward C. Eckels ◽  
Julio M. Fernández

Magnetic tape heads are ubiquitously used to read and record on magnetic tapes in technologies as diverse as old VHS tapes, modern hard-drive disks, or magnetic bands on credit cards. Their design highlights the ability to convert electric signals into fluctuations of the magnetic field at very high frequencies, which is essential for the high-density storage demanded nowadays. Here, we twist this conventional use of tape heads to implement one in a magnetic tweezers design, which offers the unique capability of changing the force with a bandwidth of ∼10 kHz. We calibrate our instrument by developing an analytical expression that predicts the magnetic force acting on a superparamagnetic bead based on the Karlqvist approximation of the magnetic field created by a tape head. This theory is validated by measuring the force dependence of protein L unfolding/folding step sizes and the folding properties of the R3 talin domain. We demonstrate the potential of our instrument by carrying out millisecond-long quenches to capture the formation of the ephemeral molten globule state in protein L, which has never been observed before. Our instrument provides the capability of interrogating individual molecules under fast-changing forces with a control and resolution below a fraction of a piconewton, opening a range of force spectroscopy protocols to study protein dynamics under force.


1992 ◽  
Vol 06 (16n17) ◽  
pp. 1037-1042 ◽  
Author(s):  
V. BUNTAR ◽  
U. ECKERN ◽  
C. POLITIS

The lower critical magnetic field Hc1 of superconducting Rb 3 C 60 (Tc=28.5 K ) is estimated by different methods. The zero temperature value is found to be given by Hc1=16.2±1.0 mT, and the penetration depth is λL=215±10 nm . The Bean model analysis leads to threshold fields of 5.3 mT for T=5 K , and 4.0 mT for T=17 K . The big influence of intergranular connections on Hc1 is demonstrated. Good agreement between the low- and the high-field analysis is found.


1988 ◽  
Vol 02 (03n04) ◽  
pp. 471-481 ◽  
Author(s):  
K. Y. LIN ◽  
F. Y. WU

It is shown that the free energy and the magnetization of an Ising model in the magnetic field H = iπkT/2 can be obtained directly from corresponding expressions of these quantities in zero field, provided that the latter are known for sufficiently anisotropic interactions. Using this approach we derive explicit expressions of the free energy and the magnetization at H = iπkT/2 for a number of two-dimensional lattices.


1971 ◽  
Vol 46 ◽  
pp. 455-456
Author(s):  
V. Canuto

It is usually considered that the beaming of the radiation coming out of a pulsar has to be strictly connected with the mechanism producing the radiation itself. We want to show that even when the emitting mechanism gives rise to an isotropically distributed radiation, the presence of a strong magnetic field will automatically beam the radiation preferentially along the magnetic field line rather than in any other direction. We have computed the Compton scattering and from that the opacity KH (K0 is the opacity for zero field). In Figure 1 the ratio KH/K0 is given vs. θ, the angle between the propagation vector and the magnetic field axis. Hq is a critical magnetic field numerically equal to 4.41 × 1013 G; Ne is the electron density. For the ordinary wave the opacity is reduced at θ = 0, while it is unaffected at θ = π/2 where KH → K0. Even at θ = π/4 the ratio KH/K0 is still ≃ 10−2, and a good beaming is still present. The values of the parameters are proper for a neutron star surface. It is to be noticed that the ratio KH/K0 is of the order of (ω/ωH)2 or [(kT/mc2)/(H/Hq]2. One therefore can conclude that the presence of a magnetic field itself assures the beaming of radiation along the field lines.


Sign in / Sign up

Export Citation Format

Share Document