Combined Coding Algorithm of LDPC Codes in Bit-Patterned Media Recording Channels

2014 ◽  
Vol 979 ◽  
pp. 70-74
Author(s):  
Chutima Prasartkaew ◽  
Piya Kovintavewat ◽  
Somsak Choomchuay

This paper presents a new coding algorithm of irregular low-density parity-check (LDPC) codes. This algorithm consists of two parts of block codes; parity bits was encoded using the magic square based algorithm (MSBA) which suitable for the short block (less than 500 bits) and the data bits, the rest part of all block codes, was encoded using the random number table. This proposed coding algorithm is called ‘Combined Coding Algorithm LDPC codes (CCA-LDPC codes)’ which can be used in bit-patterned media recording (BPMR) channels. The performance of the constructed codes was numerically simulated in BPMR channels model. The obtained performance of the proposed codes was compared with the comparable existing codes. The simulation results show that, at a block length of 4110 bit and code rate of 0.9, the proposed CCA-LDPC codes yields better performance than the existing ones, especially at high signal-to-noise ratio scenario.

2014 ◽  
Vol 979 ◽  
pp. 54-57 ◽  
Author(s):  
Santi Koonkarnkhai ◽  
Piya Kovintavewat ◽  
Phongsak Keeratiwintakorn

Bit-patterned media recording (BPMR) is one of the promising technologies for realizing an areal density up to 4 Tb/in2; however, it poses new challenges to read channel design, including the two-dimensional (2D) interference, media noise, and track mis-registration. Furthermore, the BPMR system encounters the insertion, deletion and substitution errors, which are primarily caused by mis-synchronization between the write clock and the island positions. In this paper, we propose a novel detection method that exploits the trellis structure to detect the occurrence of insertion/deletion bits. Specifically, the specific marker bits are inserted periodically inside an input data sequence before recording onto a magnetic medium. Hence, the branch metric calculation is monitored during the marker bits to determine if there is any insertion/deletion error in the system. Numerical results indicate that the proposed method can performs better than the conventional one in terms of the percentage of detection and the percentage of missed detection and false-alarm, especially at low signal-to-noise ratio scenario.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2161
Author(s):  
Changcai Han ◽  
Hui Li ◽  
Weigang Chen

Short or moderate-length non-binary low-density parity-check (NB-LDPC) codes have the potential applications in future low latency and high-reliability communication thanks to the strong error correction capability and parallel decoding. Because of the existence of the error floor, the NB-LDPC codes usually cannot satisfy very low bit error rate (BER) requirements. In this paper, a low-complexity method is proposed for optimizing the minimum distance of the NB-LDPC code in a progressive chord edge growth manner. Specifically, each chord edge connecting two non-adjacent vertices is added to the Hamiltonian cycle one-by-one. For each newly added chord edge, the configuration of non-zero entries corresponding to the chord edge is determined according to the so-called full rank condition (FRC) of all cycles that are related to the chord edge in the obtained subgraph. With minor modifications to the designed method, it can be used to construct the NB-LDPC codes with an efficient encoding structure. The analysis results show that the method for designing NB-LDPC codes while using progressive chord edge growth has lower complexity than traditional methods. The simulation results show that the proposed method can effectively improve the performance of the NB-LDPC code in the high signal-to-noise ratio (SNR) region. While using the proposed scheme, an NB-LDPC code with a quite low BER can be constructed with extremely low complexity.


Author(s):  
Kui Cai ◽  
Zhiliang Qin ◽  
Songhua Zhang ◽  
Yibin Ng ◽  
Kaosiang Chai ◽  
...  

2013 ◽  
Vol 462-463 ◽  
pp. 193-197
Author(s):  
Xing Ru Zhang ◽  
Jian Ping Li ◽  
Chao Shi Cai

An effective log-likelihood-ratio-based belief propagation (LLR-BP) algorithm is proposed. It can reduce computational complexity of decoding algorithm for Low Density Parity Check (LDPC) codes. By using the Taylor series and least squares, high order multiplication based on the hyperbolic tangent (tanh) rule is converted to a first-order multiplication and addition after simplification. Moreover, all the logarithmic and exponential operations disappear without significant loss of the decoding performance. The simulation results show that the performance of the proposed scheme is similar to the general LLR-BP. In particular, we show that the modified algorithm with low complexity can achieve better BER than the other decoding algorithm in high signal-to-noise ratio region.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 951-958
Author(s):  
Tianhao Liu ◽  
Yu Jin ◽  
Cuixiang Pei ◽  
Jie Han ◽  
Zhenmao Chen

Small-diameter tubes that are widely used in petroleum industries and power plants experience corrosion during long-term services. In this paper, a compact inserted guided-wave EMAT with a pulsed electromagnet is proposed for small-diameter tube inspection. The proposed transducer is noncontact, compact with high signal-to-noise ratio and unattractive to ferromagnetic tubes. The proposed EMAT is designed with coils-only configuration, which consists of a pulsed electromagnet and a meander pulser/receiver coil. Both the numerical simulation and experimental results validate its feasibility on generating and receiving L(0,2) mode guided wave. The parameters for driving the proposed EMAT are optimized by performance testing. Finally, feasibility on quantification evaluation for corrosion defects was verified by experiments.


2018 ◽  
Author(s):  
Satish Kodali ◽  
Liangshan Chen ◽  
Yuting Wei ◽  
Tanya Schaeffer ◽  
Chong Khiam Oh

Abstract Optical beam induced resistance change (OBIRCH) is a very well-adapted technique for static fault isolation in the semiconductor industry. Novel low current OBIRCH amplifier is used to facilitate safe test condition requirements for advanced nodes. This paper shows the differences between the earlier and novel generation OBIRCH amplifiers. Ring oscillator high standby leakage samples are analyzed using the novel generation amplifier. High signal to noise ratio at applied low bias and current levels on device under test are shown on various samples. Further, a metric to demonstrate the SNR to device performance is also discussed. OBIRCH analysis is performed on all the three samples for nanoprobing of, and physical characterization on, the leakage. The resulting spots were calibrated and classified. It is noted that the calibration metric can be successfully used for the first time to estimate the relative threshold voltage of individual transistors in advanced process nodes.


Nanophotonics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 2569-2576 ◽  
Author(s):  
Lu Li ◽  
Lihui Pang ◽  
Qiyi Zhao ◽  
Yao Wang ◽  
Wenjun Liu

AbstractTransition metal dichalcogenides have been widely utilized as nonlinear optical materials for laser pulse generation applications. Herein, we study the nonlinear optical properties of a VS2-based optical device and its application as a new saturable absorber (SA) for high-power pulse generation. Few-layer VS2 nanosheets are deposited on the tapered region of a microfiber to form an SA device, which shows a modulation depth of 40.52%. After incorporating the microfiber-VS2 SA into an Er-doped fiber laser cavity, passively Q-switched pulse trains could be obtained with repetition rates varying from 95 to 233 kHz. Under the pump power of 890 mW, the largest output power and shortest pulse duration are measured to be 43 mW and 854 ns, respectively. The high signal-to-noise ratio of 60 dB confirms the excellent stability of the Q-switching state. To the best of our knolowdge, this is the first illustration of using VS2 as an SA. Our experimental results demonstrate that VS2 nanomaterials have a large potential for nonlinear optics applications.


2021 ◽  
Vol 13 (1) ◽  
pp. 168781402098732
Author(s):  
Ayisha Nayyar ◽  
Ummul Baneen ◽  
Syed Abbas Zilqurnain Naqvi ◽  
Muhammad Ahsan

Localizing small damages often requires sensors be mounted in the proximity of damage to obtain high Signal-to-Noise Ratio in system frequency response to input excitation. The proximity requirement limits the applicability of existing schemes for low-severity damage detection as an estimate of damage location may not be known  a priori. In this work it is shown that spatial locality is not a fundamental impediment; multiple small damages can still be detected with high accuracy provided that the frequency range beyond the first five natural frequencies is utilized in the Frequency response functions (FRF) curvature method. The proposed method presented in this paper applies sensitivity analysis to systematically unearth frequency ranges capable of elevating damage index peak at correct damage locations. It is a baseline-free method that employs a smoothing polynomial to emulate reference curvatures for the undamaged structure. Numerical simulation of steel-beam shows that small multiple damages of severity as low as 5% can be reliably detected by including frequency range covering 5–10th natural frequencies. The efficacy of the scheme is also experimentally validated for the same beam. It is also found that a simple noise filtration scheme such as a Gaussian moving average filter can adequately remove false peaks from the damage index profile.


Sign in / Sign up

Export Citation Format

Share Document