Design and Analysis of Automotive Instrument Panel

2014 ◽  
Vol 980 ◽  
pp. 263-268 ◽  
Author(s):  
Nur Akmal Haniffah ◽  
Mohamad Fazrul Zakaria ◽  
Tan Kean Sheng

This study presents the automotive instrument panel (IP) design in order to improve the quality, cost, and safety of the existing design. A few conceptual designs were generated based on safety aspect and ergonomic design. The most suitable design was selected using concepts scoring. The IP head impact simulation was conducted using finite element analysis (FEA) to predict the head injury criterion (HIC) value of the front passenger in vehicle according to ECE-R21 regulation. The finite element (FE) model, which consist of upper IP, lower IP, carrier structure and head-form, was built-up to carry out head impact analysis of the IP assembly. The optimum IP design was proposed by analysis of different materials, which are 20% talc filled rubber modified polypropylene (PP+EPDM-TD20), acrylonitrile butadiene styrene (ABS) polymer, and polypropylene (PP) copolymer. The HIC value for all IP was compared using simulation result and theoretical calculation. The lowest HIC value will reduce the head occupant injury. In this study, only the raw material cost was considered in cost evaluation. The IP from ABS polymer performed the lowest HIC value, which were 179.7 but very costly compare to other materials.

2008 ◽  
Vol 22 (09n11) ◽  
pp. 1699-1704 ◽  
Author(s):  
MOON SAENG KIM ◽  
JOON HO LEE ◽  
BYUNG YOUNG MOON

In this study, dynamic impact analysis for the passenger air-bag(PAB) module has been carried out by using FEM to predict the dynamic characteristics of vehicle ride safety against head impact. To carry out the dynamic analysis of head impact test of the PAB module assembly of automobile, the FE models, which are consist of instrument panel, PAB Module, and head part, are combined to the whole module system. Then, impact analysis is carried out by the explicit solution procedure with assembled FE model. And the dynamic characteristics of the head impact are observed to prove the effectiveness of the proposed method by comparing with the experimental results. As a result, the better optimized impact characteristics are proposed by changing the tie bracket's width and thickness of module. The proposed approach of impact analysis will provides an efficient vehicle to improve the design quality and reduce the design period and cost.


2013 ◽  
Vol 658 ◽  
pp. 464-470
Author(s):  
Supakit Rooppakhun ◽  
Sarawut Bua-Ngam

In Thailand, according to the bus accident statistics referred to Department of Land Transport (DLT), the highest risk represents the frontal crash accidents. In case of frontal crashworthiness, the high- decker bus safety was referred to the regulation no.29 of United Nations Economic Commission for Europe (ECE-R29). In this study, the frontal impact analysis of the high-decker passenger bus structure based on ECE-R29 using Finite Element (FE) analysis was focused on. The energy absorption including to the total deformation of the frontal cabin were evaluated. Three-dimensional FE model of frontal bus structure with- and without- simple impact attenuator were created and analyzed using ANSYS/Explicit software. In accordance with the results, the average magnitude of kinetic energy in case of impact attenuator revealed the value lower than those without impact attenuator owing to absorb energy in the impact attenuator. In addition, the total deformation regarding to the safe zone of the frontal cabin in the case of with impact attenuator were lower than without impact attenuator as 75.8%. Therefore, the frontal impact attenuator should be recommended to a high-decker bus for the driver protection in the event of crash accident.


2019 ◽  
Vol 820 ◽  
pp. 173-178
Author(s):  
Aissa Ouballouch ◽  
Rachid Elalaiji ◽  
Issam Ouahmane ◽  
Larbi Lasri ◽  
Mohammed Sallaou

This paper deals with the analyzing and comparing the thermal performance of heat dissipation system and other components in the design of E3D liquefier using Finite Element Modeling (FEM) for three different filaments namely Polycaprolactone (PCL), polylactic acid (PLA) and Acrylonitrile Butadiene Styrene(ABS). This work evaluates the influence of airflow generated by means of a fan coupled to the extruder. The printable materials are also taken as variable in this investigation. The heating process should ensure the balance between proper heating of the material and controlling the temperature along the extruding body, so it reaches above 140 degrees in function of raw material on the tip of the nozzle and must be lower at the top of the liquefier for the correct perseveration of the 3D printer and its durability.


2016 ◽  
Vol 715 ◽  
pp. 186-191 ◽  
Author(s):  
Chih Hsing Liu ◽  
Yu Cheng Lai ◽  
Chen Hua Chiu ◽  
Meng Hsien Lin

This study presents the numerical and experimental interior head impact analysis of automotive instrument panel according to the United Nations Economic Commission for Europe Regulation 21 (ECE R21). To minimize the possible injury risk for unrestrained front seat passengers due to the interior head impact with the instrument panel, the panel design needs to meet the ECE R21 standard which defines a pendulum-type head form as the impactor. The measured acceleration response of the head form should not exceed 80g continuously for more than 3ms. Motivated by the need to develop a simulation-based technique to evaluate the design of the instrument panel, a numerical model based on the explicit dynamic finite element analysis (FEA) by using the commercial FEA solver, LS-DYNA, is developed. To minimize the experimental cost, a gravity-based impactor with a smaller impact speed is develop as the test apparatus for verification purpose. The simulated results agree well with the experimental data; the average accuracy for the maximum value of impact acceleration at the head form is 95.4%. After the verification, the standard test conditions (with higher impact speed) are performed to evaluate the design. The outcome of this study can provide an efficient and cost-effective method to predict and improve the design of the instrument panel for interior head impact protection.


Author(s):  
Ashwini Gautam ◽  
Chris Fuller ◽  
James Carneal

This work presents an extensive analysis of the properties of distributed vibration absorbers (DVAs) and their effectiveness in controlling the sound radiation from the base structure. The DVA acts as a distributed mass absorber consisting of a thin metal sheet covering a layer of acoustic foam (porous media) that behaves like a distributed spring-mass-damper system. To assess the effectiveness of these DVAs in controlling the vibration of the base structures (plate) a detailed finite elements model has been developed for the DVA and base plate structure. The foam was modeled as a poroelastic media using 8 node hexahedral elements. The structural (plate) domain was modeled using 16 degree of freedom plate elements. Each of the finite element models have been validated by comparing the numerical results with the available analytical and experimental results. These component models were combined to model the DVA. Preliminary experiments conducted on the DVAs have shown an excellent agreement between the results obtained from the numerical model of the DVA and from the experiments. The component models and the DVA model were then combined into a larger FE model comprised of a base plate with the DVA treatment on its surface. The results from the simulation of this numerical model have shown that there has been a significant reduction in the vibration levels of the base plate due to DVA treatment on it. It has been shown from this work that the inclusion of the DVAs on the base plate reduces their vibration response and therefore the radiated noise. Moreover, the detailed development of the finite element model for the foam has provided us with the capability to analyze the physics behind the behavior of the distributed vibration absorbers (DVAs) and to develop more optimized designs for the same.


2021 ◽  
pp. 136943322110015
Author(s):  
Rana Al-Dujele ◽  
Katherine Ann Cashell

This paper is concerned with the behaviour of concrete-filled tubular flange girders (CFTFGs) under the combination of bending and tensile axial force. CFTFG is a relatively new structural solution comprising a steel beam in which the compression flange plate is replaced with a concrete-filled hollow section to create an efficient and effective load-carrying solution. These members have very high torsional stiffness and lateral torsional buckling strength in comparison with conventional steel I-girders of similar depth, width and steel weight and are there-fore capable of carrying very heavy loads over long spans. Current design codes do not explicitly include guidance for the design of these members, which are asymmetric in nature under the combined effects of tension and bending. The current paper presents a numerical study into the behaviour of CFTFGs under the combined effects of positive bending and axial tension. The study includes different loading combinations and the associated failure modes are identified and discussed. To facilitate this study, a finite element (FE) model is developed using the ABAQUS software which is capable of capturing both the geometric and material nonlinearities of the behaviour. Based on the results of finite element analysis, the moment–axial force interaction relationship is presented and a simplified equation is proposed for the design of CFTFGs under combined bending and tensile axial force.


Author(s):  
Constantine M. Tarawneh ◽  
Arturo A. Fuentes ◽  
Javier A. Kypuros ◽  
Lariza A. Navarro ◽  
Andrei G. Vaipan ◽  
...  

In the railroad industry, distressed bearings in service are primarily identified using wayside hot-box detectors (HBDs). Current technology has expanded the role of these detectors to monitor bearings that appear to “warm trend” relative to the average temperatures of the remainder of bearings on the train. Several bearings set-out for trending and classified as nonverified, meaning no discernible damage, revealed that a common feature was discoloration of rollers within a cone (inner race) assembly. Subsequent laboratory experiments were performed to determine a minimum temperature and environment necessary to reproduce these discolorations and concluded that the discoloration is most likely due to roller temperatures greater than 232 °C (450 °F) for periods of at least 4 h. The latter finding sparked several discussions and speculations in the railroad industry as to whether it is possible to have rollers reaching such elevated temperatures without heating the bearing cup (outer race) to a temperature significant enough to trigger the HBDs. With this motivation, and based on previous experimental and analytical work, a thermal finite element analysis (FEA) of a railroad bearing pressed onto an axle was conducted using ALGOR 20.3™. The finite element (FE) model was used to simulate different heating scenarios with the purpose of obtaining the temperatures of internal components of the bearing assembly, as well as the heat generation rates and the bearing cup surface temperature. The results showed that, even though some rollers can reach unsafe operating temperatures, the bearing cup surface temperature does not exhibit levels that would trigger HBD alarms.


2015 ◽  
Vol 712 ◽  
pp. 63-68
Author(s):  
Przemysław Osocha ◽  
Bohdan Węglowski

In some coal-fired power plants, pipeline elements have worked for over 200 000 hours and increased number of failures is observed. The paper discuses thermal wear processes that take place in those elements and lead to rupture. Mathematical model based on creep test data, and describing creep processes for analyzed material, has been developed. Model has been verified for pipeline operating temperature, lower than tests temperature, basing on Larson-Miller relation. Prepared model has been used for thermal-strength calculations based on a finite element method. Processes taking place inside of element and leading to its failure has been described. Than, basing on prepared mathematical creep model and FE model introduced to Ansys program further researches are made. Analysis of dimensions and shape of pipe junction and its influence on operational element lifetime is presented. In the end multi variable dependence of temperature, steam pressure and element geometry is shown, allowing optimization of process parameters in function of required operational time or maximization of steam parameters. The article presents wide range of methods. The creep test data were recalculated for operational temperature using Larson-Miller parameter. The creep strain were modelled, used equations and their parameters are presented. Analysis of errors were conducted. Geometry of failing pipe junction was introduced to the Ansys program and the finite element analysis of creep process were conducted.


Author(s):  
R. N. Margasahayam ◽  
H. S. Faust

Abstract A finite-element stress analysis of a one-piece, integrated, all-composite shaft and coupling is presented. In addition to a brief discussion of design-driving parameters, some limitations of the analytical techniques used for design development are described. The 3D finite-element method (FEM) was then used to evaluate critical stresses and strains experienced by the shaft coupling. A comparison of the results from the finite-element analysis and those from static bending, axial, and torsional tests conducted on these prototype shafts yielded excellent correlation. Some important considerations in the development of the FE model and the correlation of results with tests, especially in the design of composite materials, are addressed.


Author(s):  
J. Rodriguez ◽  
M. Him

Abstract This paper presents a finite element mesh generation algorithm (PREPAT) designed to automatically discretize two-dimensional domains. The mesh generation algorithm is a mapping scheme which creates a uniform isoparametric FE model based on a pre-partitioned domain of the component. The proposed algorithm provides a faster and more accurate tool in the pre-processing phase of a Finite Element Analysis (FEA). A primary goal of the developed mesh generator is to create a finite element model requiring only essential input from the analyst. As a result, the generator code utilizes only a sketch, based on geometric primitives, and information relating to loading/boundary conditions. These conditions represents the constraints that are propagated throughout the model and the available finite elements are uniformly mapped in the resulting sub-domains. Relative advantages and limitations of the mesh generator are discussed. Examples are presented to illustrate the accuracy, efficiency and applicability of PREPAT.


Sign in / Sign up

Export Citation Format

Share Document