Evaluation of Mechanical Properties of BAGcrete

2014 ◽  
Vol 984-985 ◽  
pp. 693-697
Author(s):  
K. Rekha ◽  
R. Thenmozhi

The usage of waste materials in making concrete gives a satisfactory solution to some of the problems related to waste management and environmental concerns. In the development of blended cements, some of the Agro wastes such as sugarcane bagasse ash, rice husk ash and wheat straw ash are used as pozzolanic materials. Few studies have been reported on the use of bagasse ash (BA) as partial cement replacement material. This research aims to study the physical and mechanical properties of hardened concrete prepared with bagasse ash as partial replacement material for cement are reported. The Portland cement was replaced with BA in the ratio of 0%, 5%, 10%, 15% and 20% of weight of cement. The compressive strength, splitting tensile strength and flexural strength of concrete at the age of 28 days were investigated. From the test results it was observed that bagasse ash is an effective mineral admixture, with 5% as optimal replacement ratio of cement.

2018 ◽  
Vol 760 ◽  
pp. 204-209 ◽  
Author(s):  
Magdaléna Šefflová

This study deals with determination of the properties of the fine recycled aggregate (FRA) concrete with partial replacement of natural sand in concrete mixtures. The FRA was obtained from concrete waste and crushed on fraction 0 – 4 mm by laboratory jaw crusher. The geometrical and physical properties of natural sand and the FRA were tested. The main goal of this study is evaluation of the basic physical and mechanical properties of the concrete with partial natural sand replacement by the FRA such as workability, water absorption capacity, compressive strength and flexural strength. A total four concrete mixtures were prepared. The first concrete mixture was prepared only with natural sand, did not include the FRA. In other concrete mixtures, natural sand was replaced by the FRA in various replacement ratios (40 %, 50 %, and 60 %). All concrete mixtures were designated with the same parameters for clear comparison. The workability of fresh concrete mixtures and physical and mechanical properties of hardened concrete were tested.


2019 ◽  
Vol 972 ◽  
pp. 10-15
Author(s):  
B.C. Gayana ◽  
Mallikarjuna Shashanka ◽  
Avinash N. Rao ◽  
Karra Ram Chandar

Concrete is an essential construction material. Even-though conventional concrete performs and satisfy the structures under normal conditions, a few special situations require very high compressive strength of concrete. An experimental investigation is done to develop high strength concrete with suitable admixtures and steel fibers. The properties of fresh and hardened concrete with alccofine as partial replacement for binder and poly-carboxylate ether (Glenium 8233) and steel fibers is investigated for the workability and mechanical properties i.e., compressive, splitting tensile and flexural strength of concrete. Based on the results, the strength increased with the addition of alccofine compared to the control mix. Hence, by optimum percentage of alccofine, high strength of concrete of 112 MPa can be obtained.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Tehmina Ayub ◽  
Sadaqat Ullah Khan ◽  
Fareed Ahmed Memon

The available literature identifies that the addition of mineral admixture as partial replacement of cement improves the microstructure of the concrete (i.e., porosity and pore size distribution) as well as increasing the mechanical characteristics such as drying shrinkage and creep, compressive strength, tensile strength, flexural strength, and modulus of elasticity; however, no single document is available in which review and comparison of the influence of the addition of these mineral admixtures on the mechanical characteristics of the hardened pozzolanic concretes are presented. In this paper, based on the reported results in the literature, mechanical characteristics of hardened concrete partially containing mineral admixtures including fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK), and rice husk ash (RHA) are discussed and it is concluded that the content and particle size of mineral admixture are the parameters which significantly influence the mechanical properties of concrete. All mineral admixtures enhance the mechanical properties of concrete except FA and GGBS which do not show a significant effect on the strength of concrete at 28 days; however, gain in strength at later ages is considerable. Moreover, the comparison of the mechanical characteristics of different pozzolanic concretes suggests that RHA and SF are competitive.


2019 ◽  
Vol 280 ◽  
pp. 04013
Author(s):  
Irfan Prasetia ◽  
M. Fahmi Rizani

Nowadays, PLTU Asam-Asam produced enormous amounts of combustion waste in the form of coal ash. On the contrary, only a little effort has been made to utilize coal ash from PLTU Asam-Asam, especially from the research side. In fact, due to its siliceous material, when reacting with CH in concrete, will form CSH hence improves concrete strength. In this study, in order to analyze the physical and mechanical properties of concrete using fly ash from PLTU Asam-Asam, 54 concrete samples were prepared according to SNI-03-2834-2000. The examination of concrete samples workability was conducted based on the slump test according to SNI 1972:2008. Moreover, the compressive tests were carried out in accordance with SNI 1974:2011. The slump test results show that the pozzolanic reaction of fly ash contributes to the improvement of concrete workability. Furthermore, the variation in w/b ratio was also affecting the results of the slump test. As for the compressive strength, in general speaking, the replacement ratio of 30% of cement with fly ash in concrete could produce concrete strength up to 30 Mpa. It is also important to note that due to the pozzolanic reactions tends to delayed, it is expected that at later ages (above 28 days) concrete with fly ash will gain much more strength compared to ordinary concrete.


2014 ◽  
Vol 627 ◽  
pp. 369-372
Author(s):  
Hyun Ki Choi

The purpose of this study was to analyze the mechanical properties of concrete produced with wastepaper for obtaining the optimum mix design of that. The concrete produced with wastepaper was made up of the cement, water, sand, and cut wastepaper. For this purpose, the concrete which had variety mixing ratio of materials was mixed and cured to find out the mechanical properties of that. And, it was performed the compressive and tensile test and the measurement of hardened concrete. The test result of this study was showed that the partial replacement ratio of wastepaper was the decisive influence variable and the correlation between the mechanical properties


2017 ◽  
Vol 866 ◽  
pp. 199-203
Author(s):  
Chidchanok Chainej ◽  
Suparut Narksitipan ◽  
Nittaya Jaitanong

The aims of this research were study the microstructures and mechanical properties for partial replacement of cement with Fly ash (FA) and kaolin waste (KW). Ordinary Portland cement were partially replaced with FA and KW in the range of 25-35% and 10-25% by weight of cement powder. The kaolin waste was ground for 180 minutes before using. The specimen was packing into an iron mold which sample size of 5×5×5 cm3. Then, the specimens were kept at room temperature for 24 hours and were moist cured in the incubation lime water bath at age of 3 days. After that the specimens were dry cured with plastic wrap at age of 3, 7, 14 and 28 days. After that the compounds were examined by x-ray diffraction patterns (XRD) and the microstructures were examined by scanning electron microscopy (SEM). The compressive strength was then investigated.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

This study was conducted to determine some physical and mechanical properties of high-strength flowable mortar reinforced with different percentages of palm fiber (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6% as volumetric fractions). The density, compressive strength, flexural strength, and toughness index were tested to determine the mechanical properties of this mortar. Test results illustrate that the inclusion of this fiber reduces the density of mortar. The use of 0.6% of palm fiber increases the compressive strength and flexural strength by about 15.1%, and 16%, respectively; besides, the toughness index (I5) of the high-strength flowable mortar has been significantly enhanced by the use of 1% and more of palm fiber.


Today’s world is always leads to development in technology as well as the economic growth though sometime these will affect the environment badly. That’s why world environmental commission coined the termed called sustainable development where development takes place without hampering the others’ needs. Concrete industry is rapidly growing industry in India which consumes lots of natural resources during the production of concrete. Here Stone dust is used as a sustainable material in place of sand partially. M25 grade of concrete has been chosen for the experiments. Different mechanical properties of concrete like compressive strength, Split tensile, flexural strength etc. and Microstructural features like SEM, EDX have been included in this study. Compressive Strength and flexural strength test results shown the increase in the strength. Sulphate Resistance Properties have been tested by curing the cubes in the MgSO4 solution and increase in weight has been observed. Similarities are found in the SEM pictures


Author(s):  
Safiki Ainomugisha ◽  
Bisaso Edwin ◽  
Bazairwe Annet

Concrete has been the world’s most consumed construction material, with over 10 billion tons of concrete annually. This is mainly due to its excellent mechanical and durability properties plus high mouldability. However, one of its major constituents; Ordinary Portland Cement is reported to be expensive and unaffordable by most low-income earners. Its production contributes about 5%–8% of global CO2 greenhouse emissions. This is most likely to increase exponentially with the demand of Ordinary Portland Cement estimated to rise by 200%, reaching 6000 million tons/year by 2050.  Therefore, different countries are aiming at finding alternative sustainable construction materials that are more affordable and offer greener options reducing reliance on non-renewable sources. Therefore, this study aimed at assessing the possibility of utilizing sugarcane bagasse ash from co-generation in sugar factories as supplementary material in concrete. Physical and chemical properties of this sugarcane bagasse ash were obtained plus physical and mechanical properties of fresh and hardened concrete made with partial replacement of Ordinary Portland Cement. Cost-benefit analysis of concrete was also assessed. The study was carried using 63 concrete cubes of size 150cm3 with water absorption studied as per BS 1881-122; slump test to BS 1881-102; and compressive strength and density of concrete according to BS 1881-116. The cement binder was replaced with sugarcane bagasse ash 0%, 5%, 10%, 15%, 20%, 25% and 30% by proportion of weight. Results showed the bulk density of sugarcane bagasse ash at 474.33kg/m3, the specific gravity of 1.81, and 65% of bagasse ash has a particle size of less than 0.28mm. Chemically, sugarcane bagasse ash contained SiO2, Fe2O3, and Al2O3 at 63.59%, 3.39%, and 5.66% respectively. A 10% replacement of cement gave optimum compressive strength of 26.17MPa. This 10% replacement demonstrated a cost saving of 5.65% compared with conventional concrete. 


Sign in / Sign up

Export Citation Format

Share Document