Tailored Silica Based Xerogels and Aerogels for Insulation in Space Environments

2010 ◽  
Vol 63 ◽  
pp. 41-46 ◽  
Author(s):  
Luisa Durães ◽  
Marta Ochoa ◽  
António Portugal ◽  
Nelson Duarte ◽  
João Paulo Dias ◽  
...  

In this work, the sol-gel technology is used to produce silica based xerogels and aerogels suitable for insulation applications in Space. The properties of the obtained materials are tailored varying the precursor – Methyltrimethoxysilane (MTMS) or Methyltriethoxysilane (MTES), and the solvent – methanol or ethanol. A two-step acid-base catalyzed synthesis is used, being the obtained gels dried at atmospheric pressure, in the case of xerogels, and in supercritical conditions, for aerogels. Density and thermal conductivity must be made as low as possible for the sought application and only highly porous materials can fulfill this requirement. The obtained xerogels and aerogels, either with MTMS or MTES, show very promising properties for thermal insulation in Space, when methanol is used as solvent. The more suitable materials are obtained with MTMS and exhibit very low density (80-100 kg/m3), very high surface area (~ 400 m2/g) and small pore size (~ 30-40 Å). They also show moderate flexibility and a remarkable hydrophobic character (~ 150º).

2019 ◽  
Vol 11 (45) ◽  
pp. 5784-5792 ◽  
Author(s):  
Xiangping Ji ◽  
Juanjuan Feng ◽  
Chunying Li ◽  
Sen Han ◽  
Jiaqing Feng ◽  
...  

A silica aerogel with high surface area was prepared by an acid–base two-step catalytic sol–gel method under ambient pressure drying.


1990 ◽  
Vol 180 ◽  
Author(s):  
P. C. Cagle ◽  
W. G. Klemperer ◽  
C. A. Simmons

ABSTRACTSol-gel polymerization of [Si8O12](OCH3)8 in CH3CN under neutral conditions yields very high surface area (SBET > 900 m2/g) xerogels. This property is seen to result from the structure of the gel on the molecular level. According to N2 adsorption studies, model studies, and TEM studies, the large size and rigidity of the cubic [Si8O12] core structure leads to polymers whose rigidity inhibits extensive crosslinking of the type observed in orthosilicate derived xerogels.


Author(s):  
Venkatachalam Chokkalingam ◽  
Boris Weidenhof ◽  
Wilhelm F. Maier ◽  
Stephan Herminghaus ◽  
Ralf Seemann

Droplet based microfluidics is used to perform sol-gel reactions. The chemicals are dispensed, mixed, and pre-processed inside a microfluidic device allowing for long operation times without any clogging. Using this approach and optimizing all reaction and processing parameters we generate mesoporous silica particles with a very high surface area of 820 m2g−1 and a narrow pore radius distribution of around 2.4 nm. To take full advantage of the possibilities offered by this microfluidic synthesis route, we produced platinum supported silica microspheres (as high as 7 mol. %) for heterogeneous catalysis.


2015 ◽  
Vol 830-831 ◽  
pp. 476-479
Author(s):  
Srinivasan Nagapriya ◽  
M.R. Ajith ◽  
H. Sreemoolanadhan ◽  
Mariamma Mathew ◽  
S.C. Sharma

Silica aerogels have been prepared through sol-gel process by polymerization of TEOS in the presence of NH4F and NH4OH as catalysts. The solvent present in the gel is replaced by ethanol followed by a non-polar solvent such as n-hexane prior to solvent modification step. Gels are made hydrophobic by treating them with HMDZ to prevent rupture during drying, which has been confirmed by FTIR. Gels are then washed and dried carefully in a PID controlled oven at atmospheric pressure. The ageing duration and solvent exchange combinations are optimized to yield crack-free gels prior to drying. Aerogels are characterized for density, specific surface area, pore volume, pore size, thermal stability and contact angle. Hydrophobic, high surface area (570 m2/g), low density (0.07 g/cm3) silica aerogels are synthesized by using optimized mole ratio of precursors and catalysts. Silica aerogel granules (1-3 mm) as well as monoliths (Ф~35 mm) could be produced through ambient pressure drying of gels.


2021 ◽  
Vol 50 (5) ◽  
pp. 1604-1609
Author(s):  
Antonio de Brito Santiago Neto ◽  
Márcia Gabriely Alves da Cruz ◽  
Erwann Jeanneau ◽  
Alcineia Conceição Oliveira ◽  
Nadine Essayem ◽  
...  

New N-methyldiethanolamine-modified metal alkoxides were synthesized and employed as sol–gel precursors to obtain atomically dispersed catalysts with high surface area and tunable acid–base properties.


RSC Advances ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 3749-3754 ◽  
Author(s):  
Hongri Suo ◽  
Haohong Duan ◽  
Chunping Chen ◽  
Jean-Charles Buffet ◽  
Dermot O'Hare

Core@shell materials which exhibit hierarchical morphology with ultra high surface area and controllable pore size and structure have been synthesised.


2010 ◽  
Vol 93 (12) ◽  
pp. 4047-4052 ◽  
Author(s):  
Padmaja Parameswaran Nampi ◽  
Padmanabhan Moothetty ◽  
Wilfried Wunderlich ◽  
Frank John Berry ◽  
Michael Mortimer ◽  
...  

2018 ◽  
Vol 29 (7) ◽  
pp. 075702 ◽  
Author(s):  
Feng Qingge ◽  
Cai Huidong ◽  
Lin Haiying ◽  
Qin Siying ◽  
Liu Zheng ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Wan Nor Roslam Wan Isahak ◽  
Mohamed Wahab Mahamed Hisham ◽  
Mohd Ambar Yarmo

Porous carbon obtained by dehydrating agent, concentrated sulfuric acid (H2SO4), from biomass containing high cellulose (filter paper (FP), bamboo waste, and empty fruit bunches (EFB)) shows very high surface area and better thermal behavior. At room temperature (without heating), treatment of H2SO4removed all the water molecules in the biomass and left the porous carbon without emitting any gaseous byproducts. Brunauer-Emmett-Teller (BET) surface analysis has shown that bamboo-based carbon has good properties with higher surface area (507.8 m2/g), micropore area (393.3 m2/g), and better thermal behavior (compared to FP and EFB) without any activation or treatment process. By acid treatment of biomass, it was shown that higher carbon composition obtained from FP (85.30%), bamboo (77.72%), and EFB (76.55%) is compared to carbon from carbonization process. Under optimal sulfuric acid (20 wt.%) uses, high carbon yield has been achieved for FP (47.85 wt.%), bamboo (62.4 wt.%), and EFB (55.4 wt.%).


2013 ◽  
Vol 284-287 ◽  
pp. 230-234
Author(s):  
Yu Jen Chou ◽  
Chi Jen Shih ◽  
Shao Ju Shih

Recent years mesoporous bioactive glasses (MBGs) have become important biomaterials because of their high surface area and the superior bioactivity. Various studies have reported that when MBGs implanted in a human body, hydroxyl apatite layers, constituting the main inorganic components of human bones, will form on the MBG surfaces to increase the bioactivity. Therefore, MBGs have been widely applied in the fields of tissue regeneration and drug delivery. The sol-gel process has replaced the conventional glasses process for MBG synthesis because of the advantages of low contamination, chemical flexibility and lower calcination temperature. In the sol-gel process, several types of surfactants were mixed with MBG precursor solutions to generate micelle structures. Afterwards, these micelles decompose to form porous structures after calcination. Although calcination is significant for contamination, crystalline and surface area in MBG, to the best of the authors’ knowledge, only few systematic studies related to calcination were reported. This study correlated the calcination parameters and the microstructure of MBGs. Microstructure evaluation was characterized by transmission electron microscopy and nitrogen adsorption/desorption. The experimental results show that the surface area and the pore size of MBGs decreased with the increasing of the calcination temperature, and decreased dramatically at 800°C due to the formation of crystalline phases.


Sign in / Sign up

Export Citation Format

Share Document