Classified Catalogue for Textile Based Sensors

2012 ◽  
Vol 80 ◽  
pp. 142-151 ◽  
Author(s):  
Patrycja Bosowski ◽  
Christian Husemann ◽  
Till Quadflieg ◽  
Stefan Jockenhövel ◽  
Thomas Gries

Technical textiles are used primarily for their technical functionality in many different industries. For monitoring the functionality of textiles it is possible to integrate sensors into the textile. Since textiles are made of fibres, yarns, two-or three dimensional structures the sensor systems should accordingly be designed as a part of them. Smart textiles are concerned with textile based sensors integrated mechanically and structurally to a textile. The state of the art in developing textile based sensors extends from sensor fibres to over coated yarns and textiles but without using standardized tools. The development of a textile sensor and its interpretation on a specific application has been associated with many investigations into combination of different conductive materials, what is a lengthy and costly developing process. Knowledge has already been generated on textile sensors, which now requires an appropriate classification and structure. A classified catalogue which allows a direct selection of textile based sensor modules on the basis of measured values. The catalogue´s structure follows, apart from the VDI- guideline 2222, of which complex coherences can be arranged and a clear representation can be found. Setting standards in the field of smart textiles helps companies to produce more smart products.

Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4534 ◽  
Author(s):  
Elżbieta Bogdan ◽  
Piotr Michorczyk

This paper describes the process of additive manufacturing and a selection of three-dimensional (3D) printing methods which have applications in chemical synthesis, specifically for the production of monolithic catalysts. A review was conducted on reference literature for 3D printing applications in the field of catalysis. It was proven that 3D printing is a promising production method for catalysts.


2019 ◽  
Vol 22 (64) ◽  
pp. 47-62
Author(s):  
Mariela Morveli Espinoza ◽  
Juan Carlos Nieves ◽  
Ayslan Possebom ◽  
Cesar Augusto Tacla

By considering rational agents, we focus on the problem of selecting goals out of a set of incompatible ones. We consider three forms of incompatibility introduced by Castelfranchi and Paglieri, namely the terminal, the instrumental (or based on resources), and the superfluity. We represent the agent's plans by means of structured arguments whose premises are pervaded with uncertainty. We measure the strength of these arguments in order to determine the set of compatible goals. We propose two novel ways for calculating the strength of these arguments, depending on the kind of incompatibility thatexists between them. The first one is the logical strength value, it is denoted by a three-dimensional vector, which is calculated from a probabilistic interval associated with each argument. The vector represents the precision of the interval, the location of it, and the combination of precision and location. This type of representation and treatment of the strength of a structured argument has not been defined before by the state of the art. The second way for calculating the strength of the argument is based on the cost of the plans (regarding the necessary resources) and the preference of the goals associated with the plans. Considering our novel approach for measuring the strength of structured arguments, we propose a semantics for the selection of plans and goals that is based on Dung's abstract argumentation theory. Finally, we make a theoretical evaluation of our proposal.


Confectionery sunflower - a special area of use of sunflower, which requires the creation of marketable seeds quality features. One of the possible ways to create large-fruited sunflower is to create production hybrids and lines. Objective: to evaluate the created new large-fruited sunflower lines by a complex of morphological characters and determine the best lines for use as large-seeds hybrids as parent components or source material. In 2016-2019 years on the basis of the Institute of Oilseed Crops NAAS a study was conducted to assess the economic characteristics of large-fruited sunflower lines. We studied a collection of 27 lines of large-seeds sources. The lines were created by direct selection or crossing and sampling: Reyny of Argentinean origin, Zaporizhzhya confectionery variety, confectionery hybrid with striped pericarp color of Israeli origin, white seed of Turkish origin, synthetic population - donor of complex resistance. To study from the collection, lines were drawn that went through at least 7 generations with selection for seed size. Experience has shown that the shortest growing season for lines 174d and KP11 was 99 days, and the longest for lines I2K670 was 109 days. In the studied collection, the greatest mass of 1000 seeds has the KP11-146.47g line, which is the mother component and does not have branching. The second by weight of 1000 seeds (109 g) stood out line 168v, which also had branches and pollen fertility restoration genes and will be used as the paternal form. The third largest is also one basket line ZKN51-100. The collection included lines originating from the same combination, but with a different morphotype for the presence and absence of branching. So, based on the combination of KP11 x Zaporizhzhya Confectionery, three lines were obtained. A mass of 1000 seeds was observed in 98-86 g, with the branching line having the largest mass of 1000 seeds. The lines created with one combination VK678 x ZKN32: with a branch 168a had a mass of 1000 seeds 95g, and a line 168b - without a branch 109 g. Of the two lines obtained from the descendants of the combination KP11 x the striped hybrid both had branches, but the seeds were much smaller (weight of 1000 seeds 59 and 79 g). The collection also studied samples created on the basis of varieties and populations 160c, 174, 175b, the mass of 1000 seeds of which turned out to be more acceptable for large-fruited use from 83 to 99 g. Summing up the results of studying the collection of newly created lines, we can highlight the lines 162d, 168v, 175b, KP11 that are potentially promising for use in hybrids. The selections showed that large-fruited lines can be obtained from large-fruited varieties, self-pollination of large-fruited hybrids and crossing lines with hybrids and varieties. Self-pollination and selection of large-fruited lines in several generations does not provide the necessary variability for positive changes in selections. The result of the selection by weight of 1000 seeds in the offspring from crosses and from populations creates opportunities for new large-seeds sunflower.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2383 ◽  
Author(s):  
Chi Cuong Vu ◽  
Jooyong Kim

Electronic textiles, also known as smart textiles or smart fabrics, are one of the best form factors that enable electronics to be embedded in them, presenting physical flexibility and sizes that cannot be achieved with other existing electronic manufacturing techniques. As part of smart textiles, e-sensors for human movement monitoring have attracted tremendous interest from researchers in recent years. Although there have been outstanding developments, smart e-textile sensors still present significant challenges in sensitivity, accuracy, durability, and manufacturing efficiency. This study proposes a two-step approach (from structure layers and shape) to actively enhance the performance of e-textile strain sensors and improve manufacturing ability for the industry. Indeed, the fabricated strain sensors based on the silver paste/single-walled carbon nanotube (SWCNT) layers and buffer cutting lines have fast response time, low hysteresis, and are six times more sensitive than SWCNT sensors alone. The e-textile sensors are integrated on a glove for monitoring the angle of finger motions. Interestingly, by attaching the sensor to the skin of the neck, the pharynx motions when speaking, coughing, and swallowing exhibited obvious and consistent signals. This research highlights the effect of the shapes and structures of e-textile strain sensors in the operation of a wearable e-textile system. This work also is intended as a starting point that will shape the standardization of strain fabric sensors in different applications.


2021 ◽  
pp. 026553222110361
Author(s):  
Chao Han

Over the past decade, testing and assessing spoken-language interpreting has garnered an increasing amount of attention from stakeholders in interpreter education, professional certification, and interpreting research. This is because in these fields assessment results provide a critical evidential basis for high-stakes decisions, such as the selection of prospective students, the certification of interpreters, and the confirmation/refutation of research hypotheses. However, few reviews exist providing a comprehensive mapping of relevant practice and research. The present article therefore aims to offer a state-of-the-art review, summarizing the existing literature and discovering potential lacunae. In particular, the article first provides an overview of interpreting ability/competence and relevant research, followed by main testing and assessment practice (e.g., assessment tasks, assessment criteria, scoring methods, specificities of scoring operationalization), with a focus on operational diversity and psychometric properties. Second, the review describes a limited yet steadily growing body of empirical research that examines rater-mediated interpreting assessment, and casts light on automatic assessment as an emerging research topic. Third, the review discusses epistemological, psychometric, and practical challenges facing interpreting testers. Finally, it identifies future directions that could address the challenges arising from fast-changing pedagogical, educational, and professional landscapes.


Genetics ◽  
1999 ◽  
Vol 151 (4) ◽  
pp. 1379-1391
Author(s):  
Monique A Johnson ◽  
Hans R Waterham ◽  
Galyna P Ksheminska ◽  
Liubov R Fayura ◽  
Joan Lin Cereghino ◽  
...  

Abstract We have developed two novel schemes for the direct selection of peroxisome-biogenesis-defective (pex) mutants of the methylotrophic yeast Pichia pastoris. Both schemes take advantage of our observation that methanol-induced pex mutants contain little or no alcohol oxidase (AOX) activity. AOX is a peroxisomal matrix enzyme that catalyzes the first step in the methanol-utilization pathway. One scheme utilizes allyl alcohol, a compound that is not toxic to cells but is oxidized by AOX to acrolein, a compound that is toxic. Exposure of mutagenized populations of AOX-induced cells to allyl alcohol selectively kills AOX-containing cells. However, pex mutants without AOX are able to grow. The second scheme utilizes a P. pastoris strain that is defective in formaldehyde dehydrogenase (FLD), a methanol pathway enzyme required to metabolize formaldehyde, the product of AOX. AOX-induced cells of fld1 strains are sensitive to methanol because of the accumulation of formaldehyde. However, fld1 pex mutants, with little active AOX, do not efficiently oxidize methanol to formaldehyde and therefore are not sensitive to methanol. Using these selections, new pex mutant alleles in previously identified PEX genes have been isolated along with mutants in three previously unidentified PEX groups.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Vittorino Lanzio ◽  
Gregory Telian ◽  
Alexander Koshelev ◽  
Paolo Micheletti ◽  
Gianni Presti ◽  
...  

AbstractThe combination of electrophysiology and optogenetics enables the exploration of how the brain operates down to a single neuron and its network activity. Neural probes are in vivo invasive devices that integrate sensors and stimulation sites to record and manipulate neuronal activity with high spatiotemporal resolution. State-of-the-art probes are limited by tradeoffs involving their lateral dimension, number of sensors, and ability to access independent stimulation sites. Here, we realize a highly scalable probe that features three-dimensional integration of small-footprint arrays of sensors and nanophotonic circuits to scale the density of sensors per cross-section by one order of magnitude with respect to state-of-the-art devices. For the first time, we overcome the spatial limit of the nanophotonic circuit by coupling only one waveguide to numerous optical ring resonators as passive nanophotonic switches. With this strategy, we achieve accurate on-demand light localization while avoiding spatially demanding bundles of waveguides and demonstrate the feasibility with a proof-of-concept device and its scalability towards high-resolution and low-damage neural optoelectrodes.


2016 ◽  
Vol 83 (4) ◽  
Author(s):  
Youlong Chen ◽  
Yong Zhu ◽  
Xi Chen ◽  
Yilun Liu

In this work, the compressive buckling of a nanowire partially bonded to an elastomeric substrate is studied via finite-element method (FEM) simulations and experiments. The buckling profile of the nanowire can be divided into three regimes, i.e., the in-plane buckling, the disordered buckling in the out-of-plane direction, and the helical buckling, depending on the constraint density between the nanowire and the substrate. The selection of the buckling mode depends on the ratio d/h, where d is the distance between adjacent constraint points and h is the helical buckling spacing of a perfectly bonded nanowire. For d/h > 0.5, buckling is in-plane with wavelength λ = 2d. For 0.27 < d/h < 0.5, buckling is disordered with irregular out-of-plane displacement. While, for d/h < 0.27, buckling is helical and the buckling spacing gradually approaches to the theoretical value of a perfectly bonded nanowire. Generally, the in-plane buckling induces smaller strain in the nanowire, but consumes the largest space. Whereas the helical mode induces moderate strain in the nanowire, but takes the smallest space. The study may shed useful insights on the design and optimization of high-performance stretchable electronics and three-dimensional complex nanostructures.


2005 ◽  
Vol 14 (12) ◽  
pp. 2347-2353 ◽  
Author(s):  
CHRIS CLARKSON ◽  
ROY MAARTENS

If string theory is correct, then our observable universe may be a three-dimensional "brane" embedded in a higher-dimensional spacetime. This theoretical scenario should be tested via the state-of-the-art in gravitational experiments — the current and upcoming gravity-wave detectors. Indeed, the existence of extra dimensions leads to oscillations that leave a spectroscopic signature in the gravity-wave signal from black holes. The detectors that have been designed to confirm Einstein's prediction of gravity waves, can in principle also provide tests and constraints on string theory.


Sign in / Sign up

Export Citation Format

Share Document