Study on the Growth of Nb3Sn Superconductor in Cu(Sn)/Nb Diffusion Couple

2010 ◽  
Vol 297-301 ◽  
pp. 467-471
Author(s):  
A.K. Kumar ◽  
T. Laurila ◽  
V. Vuorinen ◽  
Aloke Paul

Nb3Sn growth following the bronze technique, (i.e. by interdiffusion between Cu(Sn) alloy (bronze) and Nb) is one of the important methodologies to produce this superconductor. In this study, we have addressed the confusion over the growth rate of the Nb3Sn phase. Furthermore, a possible explanation for the corrugated layer in the multifilamentary structure is discussed. Kirkendall marker experiments were conducted to study the relative mobilities of the species, which also explained the reason for finding pores in the product phase layer. Based on the parabolic growth constant at different temperatures, the activation energy for the growth is determined. We have further explained the dramatic increase in the growth rate of the product phase by changing just one atomic percentage of Sn in the Cu-Sn bronze alloy.

2012 ◽  
Vol 323-325 ◽  
pp. 491-496 ◽  
Author(s):  
Soma Prasad ◽  
Aloke Paul

Diffusion couple technique is used to study interdiffusion in Nb-Mo, Nb-Ti and Nb-Zr systems. Interdiffusion coefficients at different temperatures and compositions are determined using the relation developed by Wagner. The change in activation energy for interdiffusion with composition is determined. Further, impurity diffusion coefficient of the species are determined and compared with the available data in literature.


2012 ◽  
Vol 323-325 ◽  
pp. 401-406 ◽  
Author(s):  
Z. Nait Abdellah ◽  
Mourad Keddam ◽  
A. Elias

In this work, a simulation of the growth kinetics of layers on AISI 1018 steel was done by means of a kinetic model. This model considers a solid diffusion of boron into a semi-infinite medium where the boron solubility in the Fe phase depends on the process temperature. An expression of the parabolic growth constant was then obtained through an application of the mass balance equation at the (/substrate) interface. The present model was validated by the experimental data available in the reference work (I. Campos-Silva et al: Kovove Mater. Vol.47 (2009), p.1-9). A good concordance was observed between the experimental parabolic growth constants and the predicted ones by the model for an upper limit of boron in the phase equal to 8.91 wt.% ( as a fitting parameter of the model). In addition, the generated weight gain was estimated at the surface of the borided AISI 1018 steel as a function of the upper limit of boron in the phase and the temperature.


2015 ◽  
Vol 364 ◽  
pp. 174-181 ◽  
Author(s):  
C.C. Kammerer ◽  
M. Fu ◽  
Le Zhou ◽  
Dennis D. Keiser ◽  
Yong Ho Sohn

Using solid-to-solid couples investigation, this study characterized the reaction products evolved and quantified the diffusion kinetics when pure Mg bonded to AA6061 is subjected to thermal treatment at 300°C for 720 hours, 350°C for 360 hours, and 400°C for 240 hours. Characterization techniques include optical microscopy, scanning electron microscopy with X-ray energy dispersive spectroscopy, and transmission electron microscopy. Parabolic growth constants were determined for γ-Mg17Al12, β-Mg2Al3, and the elusive ε-phase. Similarly, the average effective interdiffusion coefficients of major constituents were calculated for Mg (ss), γ-Mg17Al12, β-Mg2Al3, and AA6061. The activation energies and pre-exponential factors for both parabolic growth constant and average effective interdiffusion coefficients were computed using the Arrhenius relationship. The activation energy for growth of γ-Mg17Al12 was significantly higher than that for β-Mg2Al3 while the activation energy for interdiffusion of γ-Mg17Al12 was only slightly higher than that for β-Mg2Al3. Comparisons are made between the results of this study and those of diffusion studies between pure Mg and pure Al [1] to examine the influence of alloying additions in AA6061.


Author(s):  
Hellismar W. da Silva ◽  
Renato S. Rodovalho ◽  
Marya F. Velasco ◽  
Camila F. Silva ◽  
Luís S. R. Vale

ABSTRACT The objective of this study was to determine and model the drying kinetics of 'Cabacinha' pepper fruits at different temperatures of the drying air, as well as obtain the thermodynamic properties involved in the drying process of the product. Drying was carried out under controlled conductions of temperature (60, 70, 80, 90 and 100 °C) using three samples of 130 g of fruit, which were weighed periodically until constant mass. The experimental data were adjusted to different mathematical models often used in the representation of fruit drying. Effective diffusion coefficients, calculated from the mathematical model of liquid diffusion, were used to obtain activation energy, enthalpy, entropy and Gibbs free energy. The Midilli model showed the best fit to the experimental data of drying of 'Cabacinha' pepper fruits. The increase in drying temperature promoted an increase in water removal rate, effective diffusion coefficient and Gibbs free energy, besides a reduction in fruit drying time and in the values of entropy and enthalpy. The activation energy for the drying of pepper fruits was 36.09 kJ mol-1.


1994 ◽  
Vol 345 ◽  
Author(s):  
T. Kretz ◽  
D. Pribat ◽  
P. Legagneux ◽  
F. Plais ◽  
O. Huet ◽  
...  

AbstractHigh purity amorphous silicon layers were obtained by ultrahigh vacuum (millitorr range) chemical vapor deposition (UHVCVD) from disilane gas. The crystalline fraction of the films was monitored by in situ electrical conductance measurements performed during isothermal annealings. The experimental conductance curves were fitted with an analytical expression, from which the characteristic crystallisation time, tc, was extracted. Using the activation energy for the growth rate extracted from our previous work, we were able to determine the activation energy for the nucleation rate for the analysed-films. For the films including small crystallites we have obtained En ∼ 2.8 eV, compared to En ∼ 3.7 eV for the completely amorphous ones.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 913
Author(s):  
Jinyi Wang ◽  
Sen Yang

The development of low-cost and high-efficiency catalysts for wastewater treatment is of great significance. Herein, nanoporous Cu/Cu2O catalysts were synthesized from MnCu, MnCuNi, and MnCuAl with similar ligament size through one-step dealloying. Meanwhile, the comparisons of three catalysts in performing methyl orange degradation were investigated. One of the catalysts possessed a degradation efficiency as high as 7.67 mg·g−1·min−1. With good linear fitting by the pseudo-first-order model, the reaction rate constant was evaluated. In order to better understand the degradation process, the adsorption behavior was considered, and it was divided into three stages based on the intra-particle diffusion model. Three different temperatures were applied to explore the activation energy of the degradation. As a photocatalytic agent, the nanoporous structure of Cu/Cu2O possessed a large surface area and it also had low activation energy, which were beneficial to the excellent degradation performance.


2010 ◽  
Vol 24 (07) ◽  
pp. 665-670
Author(s):  
MOTI RAM

The LiCo 3/5 Fe 2/5 VO 4 ceramics has been fabricated by solution-based chemical method. Frequency dependence of the dielectric constant (εr) at different temperatures exhibits a dispersive behavior at low frequencies. Temperature dependence of εr at different frequencies indicates the dielectric anomalies in εr at Tc (transition temperature) = 190°C, 223°C, 263°C and 283°C with (εr) max ~ 5370, 1976, 690 and 429 for 1, 10, 50 and 100 kHz, respectively. Frequency dependence of tangent loss ( tan δ) at different temperatures indicates the presence of dielectric relaxation in the material. The value of activation energy estimated from the Arrhenius plot of log (τd) with 103/T is ~(0.396 ± 0.012) eV.


2012 ◽  
Vol 72 (2) ◽  
pp. 343-351 ◽  
Author(s):  
MC. Bittencourt-Oliveira ◽  
B. Buch ◽  
TC. Hereman ◽  
JDT. Arruda-Neto ◽  
AN. Moura ◽  
...  

Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju (Ordem Nostocales) is one of the most troublesome bloom-forming species in Brazil. Understanding the population dynamics of the different morphotypes of C. raciborskii (straight and coiled) could assist in the prediction of favourable conditions for the proliferation of this potentially toxin-producing species. The aim of the present study was to assess the effects of two different light intensities and temperatures on the growth rate and morphology of the trichomes of the straight and coiled morphotypes. For such, two non-toxin producing strains of C. raciborskii were used - one with a coiled trichome (ITEP31) and another with a straight trichome (ITEP28). The strains were cultured in BG-11 medium in a climatic chamber under controlled conditions. Two light intensities (30 and 90 µmol.m-2.s-1 ) were combined at temperatures of 21 and 31 °C and the growth rate and morphological changes were analysed. The morphotypes responded differently to the different temperatures and light intensities. Both strains exhibited faster growth velocities when submitted to higher light intensity and temperature. The lower temperature and higher luminosity hampered the development of both strains. Variations in cellular morphology and an absence of akinetes in both strains were related to the lower temperature (21 °C). The coiled morphotype demonstrated considerable phenotype plasticity, changing the morphology of trichome throughout its growth curve. Although molecular analysis does not sustain the separation of the morphotypes as distinct species, their different eco-physiological responses should be considered further knowledge of extreme importance for the population control of these potentially toxic organisms.


Sign in / Sign up

Export Citation Format

Share Document