Effect of the Deformation and Heat Treatment on the Microstructural Evolution and Mechanical Properties of Mg-4%Y Alloy

2019 ◽  
Vol 394 ◽  
pp. 115-121
Author(s):  
Hong Xin Wang ◽  
Peng Zhang ◽  
Jian Shu Liu

This study aimed to evaluate the effects of extrusion process and subsequentheat-treatment on microstructural evolution and mechanical properties of Mg-4%Y alloy. Theresults showed that the dynamic recrystallization occurred during extrusion, the microstructure istiny equiaxial grains, the shearing stripes and parallel streamlines which distribute along theextrusion direction are especially obvious. The tensile curve has obvious yield phenomenon. Afterannealing, parallel streamlines disappear, the yield phenomenon of tensile curve eliminates, theyield strength(σ0.2) and the tensile strength(σb) decrease, the plasticity increases. The underneathmechanism for mechanical properties can be ascribed to the weak pining effect of second-phaseparticles on the movement of dislocation and release of the pile-up dislocations.

2010 ◽  
Vol 148-149 ◽  
pp. 332-337 ◽  
Author(s):  
Yong Xue ◽  
Zhi Min Zhang ◽  
Li Hui Lang

In the present research, the influences of different extrusion ratios (15, 30, 45, 60, and 75), extrusion temperatures (300 , 340 , 380 , 420 , and 460 ), and subsequent heat treatment on the mechanical properties and microstructure of as-cast ZK60 magnesium alloy have been investigated through the tensile tests and via metallographic observation. The results show that forward extrusion process can refine the microstructure of as-cast ZK60 alloy effectively. If as-cast ZK60 alloys have been extruded with the extrusion ratio 45 at 380 ,420 and 460 , respectively, and then post-heat treatment was conducted, the ZK60 alloy’s strength is higher under T5 than T6 treatment. For as-cast ZK60 alloy processed by extrusion and T5 method, the most appropriate temperature for extrusion processing is 300 , at which its tensile strength are highest provided the extrusion ratio is 30 but yet its plasticity is best provided the extrusion ratio is 45. If forward extrusions were conducted at 380 , mechanical properties of ZK60 alloy have little difference as the extrusion ratio varies. When T6 treatment was conducted for the extruded bars, their mechanical properties were improved little, moreover, the bigger the extrusion ratio is, the higher the tensile strength and elongation of the extruded bars become.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1036
Author(s):  
Eduardo Colin García ◽  
Alejandro Cruz Ramírez ◽  
Guillermo Reyes Castellanos ◽  
José Federico Chávez Alcalá ◽  
Jaime Téllez Ramírez ◽  
...  

Ductile iron camshafts low alloyed with 0.2 and 0.3 wt % vanadium were produced by one of the largest manufacturers of the ductile iron camshafts in México “ARBOMEX S.A de C.V” by a phenolic urethane no-bake sand mold casting method. During functioning, camshafts are subject to bending and torsional stresses, and the lobe surfaces are highly loaded. Thus, high toughness and wear resistance are essential for this component. In this work, two austempering ductile iron heat treatments were evaluated to increase the mechanical properties of tensile strength, hardness, and toughness of the ductile iron camshaft low alloyed with vanadium. The austempering process was held at 265 and 305 °C and austempering times of 30, 60, 90, and 120 min. The volume fraction of high-carbon austenite was determined for the heat treatment conditions by XRD measurements. The ausferritic matrix was determined in 90 min for both austempering temperatures, having a good agreement with the microstructural and hardness evolution as the austempering time increased. The mechanical properties of tensile strength, hardness, and toughness were evaluated from samples obtained from the camshaft and the standard Keel block. The highest mechanical properties were obtained for the austempering heat treatment of 265 °C for 90 min for the ADI containing 0.3 wt % V. The tensile and yield strength were 1200 and 1051 MPa, respectively, while the hardness and the energy impact values were of 47 HRC and 26 J; these values are in the range expected for an ADI grade 3.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 647 ◽  
Author(s):  
Bingrong Zhang ◽  
Lingkun Zhang ◽  
Zhiming Wang ◽  
Anjiang Gao

In order to obtain high-strength and high-ductility Al–Si–Cu–Mg alloys, the present research is focused on optimizing the composition of soluble phases, the structure and morphology of insoluble phases, and artificial ageing processes. The results show that the best matches, 0.4 wt% Mg and 1.2 wt% Cu in the Al–9Si alloy, avoided the toxic effect of the blocky Al2Cu on the mechanical properties of the alloy. The addition of 0.6 wt% Zn modified the morphology of eutectic Si from coarse particles to fine fibrous particles and the texture of Fe-rich phases from acicular β-Fe to blocky π-Fe in the Al–9Si–1.2Cu–0.4Mg-based alloy. With the optimization of the heat treatment parameters, the spherical eutectic Si and the fully fused β-Fe dramatically improved the ultimate tensile strength and elongation to fracture. Compared with the Al–9Si–1.2Cu–0.4Mg-based alloy, the 0.6 wt% Zn modified alloy not only increased the ultimate tensile strength and elongation to fracture of peak ageing but also reduced the time of peak ageing. The following improved combination of higher tensile strength and higher elongation was achieved for 0.6 wt% Zn modified alloy by double-stage ageing: 100 °C × 3 h + 180 °C × 7 h, with mechanical properties of ultimate tensile strength (UTS) of ~371 MPa, yield strength (YS) of ~291 MPa, and elongation to fracture (E%) of ~5.6%.


2007 ◽  
Vol 550 ◽  
pp. 289-294
Author(s):  
Suk Hoon Kang ◽  
Jae Hyung Cho ◽  
Joon Sub Hwang ◽  
Jong Soo Cho ◽  
Yong Jin Park ◽  
...  

Cold drawn gold wires are widely applied in electronic packaging process to interconnect micro-electronic components. They basically provides a conducting path for electronic signal transfer, and experience thermo-mechanical loads in use. The mechanical stability of drawn gold wires is a matter of practical concern in the reliable functioning of electronic devices. It is known that mechanical properties of materials are deeply related to the microstructure. With appropriate control of deformation and heat processes, the mechanical properties of final products, such as tensile strength and elongation can be improved. Severe plastic deformation by torsion usually contributes to grain refinement and increment of strength. In this study, microstructure variations with torsion strain followed by drawing and heat treatment were investigated. Analyses by focused ion beam (FIB) and electron backscattered diffraction (EBSD) were carried out to characterize the effect of deformation and heat treatment on the drawn gold wires. Pattern quality of EBSD measurements was used as a quantitative measure for plastic deformation.


2014 ◽  
Vol 941-944 ◽  
pp. 314-317
Author(s):  
Guirong Li ◽  
Hong Ming Wang ◽  
Yu Hua Cui ◽  
Yue Ming Li ◽  
Cong Xiang Peng ◽  
...  

Al3Ti and Al3Zr particles reinforced 7055Al composites were processed by cryogenic treatment with different cooling speed at 1°C/min, 3°C/min and 5°C/min. Transmission Electronic Microscopy (TEM) was mainly used to analyze the microstructural evolution of the treated samples. The results show that with the increase of cooling speed the precipitate amount and dislocation density have been increased. The precipitates orientation exhibits some preferred orientation. The mechanical properties test demonstrates that for the samples treated at 5°C/min the tensile strength and elongation has arrived at the utmost.


2019 ◽  
Vol 38 (2019) ◽  
pp. 892-896 ◽  
Author(s):  
Süleyman Tekeli ◽  
Ijlal Simsek ◽  
Dogan Simsek ◽  
Dursun Ozyurek

AbstractIn this study, the effect of solid solution temperature on microstructure and mechanical properties of the AA7075 alloy after T6 heat treatment was investigated. Following solid solution at five different temperatures for 2 hours, the AA7075 alloy was quenched and then artificially aged at 120∘C for 24 hours. Hardness measurements, microstructure examinations (SEM+EDS, XRD) and tensile tests were carried out for the alloys. The results showed that the increased solid solution temperature led to formation of precipitates in the microstructures and thus caused higher hardness and tensile strength.


2006 ◽  
Vol 114 ◽  
pp. 91-96 ◽  
Author(s):  
Maxim Yu. Murashkin ◽  
M.V. Markushev ◽  
Julia Ivanisenko ◽  
Ruslan Valiev

The effects of equal channel angular pressing (ECAP), further heat treatment and rolling on the structure and room temperature mechanical properties of the commercial aluminum alloys 6061 (Al-0.9Mg-0.7Si) and 1560 (Al-6.5Mg-0.6Mn) were investigated. It has been shown that the strength of the alloys after ECAP is higher than that achieved after conventional processing. Prior ECAP solution treatment and post-ECAP ageing can additionally increase the strength of the 6061 alloy. Under optimal ageing conditions a yield strength (YS) of 434 MPa and am ultimate tensile strength (UTS) of 470 MPa were obtained for the alloy. Additional cold rolling leads to a YS and UTS of 475 and 500 MPa with 8% elongation. It was found that the post-ECAP isothermal rolling of the 1560 alloy resulted in the formation of a nano-fibred structure and a tensile strength (YS = 540 MPa and UTS = 635 MPa) that has never previously been observed in commercial non-heat treatable alloys.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1023 ◽  
Author(s):  
Byung-Hoon Lee ◽  
Sung-Woo Park ◽  
Soong-Keun Hyun ◽  
In-Sik Cho ◽  
Kyung-Taek Kim

The effect of heat treatment condition on non-Cu AA7021 alloy was investigated with respect to mechanical properties and very high cycle fatigue behavior. With a focus on the influence of heat treatment, AA7021 alloy was solution heat-treated at 470 °C for 4 h and aged at 124 °C. Comparing the results of solution-treated and peak-aged AA7021 alloy shows a significant increase in Vickers hardness and tensile strength. The hardness of AA7021 alloy was increased by 65% after aging treatment, and both tensile strength and yield strength were increased by 50~80 MPa in each case. In particular, this paper investigated the very high cycle fatigue behavior of AA7021 alloy with the ultrasonic fatigue testing method using a resonance frequency of 20 kHz. The fatigue results showed that the stress amplitude of peak-aged AA7021 alloy was about 50 MPa higher than the solution-treated alloy at the same fatigue cycles. Furthermore, it was confirmed that the size of the crack initiation site was larger after peak aging than after solution treatment.


2017 ◽  
Vol 132 ◽  
pp. 312-319 ◽  
Author(s):  
Xiaolong Zhang ◽  
Liang Zhang ◽  
Guohua Wu ◽  
Wencai Liu ◽  
Chunchang Shi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document