Tantalum as a Novel Biomaterial for Bone Implant: A Literature Review

Author(s):  
Ivan Putrantyo ◽  
Nikhit Anilbhai ◽  
Revati Vanjani ◽  
Brigita De Vega

Titanium (Ti) has been used in metallic implants since the 1950s due to various biocompatible and mechanical properties. However, due to its high Young’s modulus, it has been modified over the years in order to produce a better biomaterial. Tantalum (Ta) has recently emerged as a new potential biomaterial for bone and dental implants. It has been reported to have better corrosion resistance and osteo-regenerative properties as compared to Ti alloys which are most widely used in the bone-implant industry. Currently, Tantalum cannot be widely used yet due to its limited availability, high melting point, and high-cost production. This review paper discusses various manufacturing methods of Tantalum alloys, including conventional and additive manufacturing and also discusses their drawbacks and shortcomings. Recent research includes surface modification of various metals using Tantalum coatings in order to combine bulk material properties of different materials and the porous surface properties of Tantalum. Design modification also plays a crucial role in controlling bulk properties. The porous design does provide a lower density, wider surface area, and more immense specific strength. In addition to improved mechanical properties, a porous design could also escalate the material's biological and permeability properties. With current advancement in additive manufacturing technology, difficulties in processing Tantalum could be resolved. Therefore, Tantalum should be considered as a serious candidate material for future bone and dental implants.

2012 ◽  
Vol 535-537 ◽  
pp. 1222-1229 ◽  
Author(s):  
Francesco Cardaropoli ◽  
Vittorio Alfieri ◽  
Fabrizia Caiazzo ◽  
Vincenzo Sergi

The paper discusses the possibility of manufacturing dental implants through Selective Laser Melting (SLM) of a Ti-6Al-4V alloy powder. Among all possible biomaterials, this alloy is widely used in biomedical applications due to high biocompatibility. Selective Laser Melting allows to obtain biomaterials with peculiar characteristics in terms of porosity gradient, roughness, customized geometry, and mechanical properties. Influence of input process parameters on porosity and analysis of Selective Laser Melting capabilities in implant dentistry have been focused. Porosity is a key parameter in dental implants as it affects stiffness, which is related to Young’s modulus. Ti-6Al-4V bulk material presents a Young’s modulus of 110 GPa, whereas the bone one ranges from 10 to 26 GPa. The relative difference of mechanical properties causes the phenomenon of stress shielding, which has a detrimental effect on the longevity of dental implants. Total porosity is important in reducing the effective modulus of porous metals. Biomaterials specimens obtained during experimental phase have been examined in terms of porosity (in inverse ratio to relative density), microstructure, microhardness and roughness. According to test results discussed in this paper, Selective Laser Melting is proved to be an efficient technology for the construction of Ti-6Al-4V dental implants, because biomaterials with adequate properties can be obtained changing processing parameters. Other fabrication techniques fail to produce biomaterials for dental implants with the desired features.


2021 ◽  
Vol 118 (23) ◽  
pp. e2020160118
Author(s):  
Linus Stegbauer ◽  
Paul J. M. Smeets ◽  
Robert Free ◽  
Shay G. Wallace ◽  
Mark C. Hersam ◽  
...  

Engineering structures that bridge between elements with disparate mechanical properties are a significant challenge. Organisms reap synergy by creating complex shapes that are intricately graded. For instance, the wear-resistant cusp of the chiton radula tooth works in concert with progressively softer microarchitectural units as the mollusk grazes on and erodes rock. Herein, we focus on the stylus that connects the ultrahard and stiff tooth head to the flexible radula membrane. Using techniques that are especially suited to probe the rich chemistry of iron at high spatial resolution, in particular synchrotron Mössbauer and X-ray absorption spectroscopy, we find that the upper stylus of Cryptochiton stelleri is in fact a mineralized tissue. Remarkably, the inorganic phase is nano disperse santabarbaraite, an amorphous ferric hydroxyphosphate that has not been observed as a biomineral. The presence of two persistent polyamorphic phases, amorphous ferric phosphate and santabarbaraite, in close proximity, is a unique aspect that demonstrates the level of control over phase transformations in C. stelleri dentition. The stylus is a highly graded material in that its mineral content and mechanical properties vary by a factor of 3 to 8 over distances of a few hundred micrometers, seamlessly bridging between the soft radula and the hard tooth head. The use of amorphous phases that are low in iron and high in water content may be key to increasing the specific strength of the stylus. Finally, we show that we can distill these insights into design criteria for inks for additive manufacturing of highly tunable chitosan-based composites.


Author(s):  
Yashwant Koli ◽  
N Yuvaraj ◽  
Aravindan Sivanandam ◽  
Vipin

Nowadays, rapid prototyping is an emerging trend that is followed by industries and auto sector on a large scale which produces intricate geometrical shapes for industrial applications. The wire arc additive manufacturing (WAAM) technique produces large scale industrial products which having intricate geometrical shapes, which is fabricated by layer by layer metal deposition. In this paper, the CMT technique is used to fabricate single-walled WAAM samples. CMT has a high deposition rate, lower thermal heat input and high cladding efficiency characteristics. Humping is a common defect encountered in the WAAM method which not only deteriorates the bead geometry/weld aesthetics but also limits the positional capability in the process. Humping defect also plays a vital role in the reduction of hardness and tensile strength of the fabricated WAAM sample. The humping defect can be controlled by using low heat input parameters which ultimately improves the mechanical properties of WAAM samples. Two types of path planning directions namely uni-directional and bi-directional are adopted in this paper. Results show that the optimum WAAM sample can be achieved by adopting a bi-directional strategy and operating with lower heat input process parameters. This avoids both material wastage and humping defect of the fabricated samples.


Author(s):  
Chen Hu ◽  
Malik Haider ◽  
Lukas Hahn ◽  
Mengshi Yang ◽  
Robert Luxenhofer

Hydrogels that can be processed with additive manufacturing techniques and concomitantly possess favorable mechanical properties are interesting for many advanced applications. However, the development of novel ink materials with high...


2021 ◽  
Vol 11 (12) ◽  
pp. 5324
Author(s):  
Maria Menini ◽  
Francesca Delucchi ◽  
Domenico Baldi ◽  
Francesco Pera ◽  
Francesco Bagnasco ◽  
...  

(1) Background: Intrinsic characteristics of the implant surface and the possible presence of endotoxins may affect the bone–implant interface and cause an inflammatory response. This study aims to evaluate the possible inflammatory response induced in vitro in macrophages in contact with five different commercially available dental implants. (2) Methods: one zirconia implant NobelPearl® (Nobel Biocare) and four titanium implants, Syra® (Sweden & Martina), Prama® (Sweden & Martina), 3iT3® (Biomet 3i) and Shard® (Mech & Human), were evaluated. After 4 h of contact of murine macrophage cells J774a.1 with the implants, the total RNA was extracted, transcribed to cDNA and the gene expression of the macrophages was evaluated by quantitative PCR (qPCR) in relation to the following genes: GAPDH, YWHAZ, IL1β, IL6, TNFα, NOS2, MMP-9, MMP-8 and TIMP3. The results were statistically analyzed and compared with negative controls. (3) Results: No implant triggered a significant inflammatory response in macrophages, although 3iT3 exhibited a slight pro-inflammatory effect compared to other samples. (4) Conclusions: All the samples showed optimal outcomes without any inflammatory stimulus on the examined macrophagic cells.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 748
Author(s):  
Katayoon Kalantari ◽  
Bahram Saleh ◽  
Thomas J. Webster

Metallic materials are widely used for fabricating medical implants due to their high specific strength, biocompatibility, good corrosion properties, and fatigue resistance. Recently, titanium (Ti) and its alloys, as well as stainless steel (SS), have attracted attention from researchers because of their biocompatibility properties within the human body; however, improvements in mechanical properties while keeping other beneficial properties unchanged are still required. Severe plastic deformation (SPD) is a unique process for fabricating an ultra-fine-grained (UFG) metal with micrometer- to nanometer-level grain structures. SPD methods can substantially refine grain size and represent a promising strategy for improving biological functionality and mechanical properties. This present review paper provides an overview of different SPD techniques developed to create nano-/ultra-fine-grain-structured Ti and stainless steel for improved biomedical implant applications. Furthermore, studies will be covered that have used SPD techniques to improve bone cell proliferation and function while decreasing bacterial colonization when cultured on such nano-grained metals (without resorting to antibiotic use).


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 41
Author(s):  
Yin-Yu Chang ◽  
Cheng-Hsi Chung

Multi-element material coating systems have received much attention for improving the mechanical performance in industry. However, they are still focused on ternary systems and seldom beyond quaternary ones. High entropy alloy (HEA) bulk material and thin films are systems that are each comprised of at least five principal metal elements in equally matched proportions, and some of them are found possessing much higher strength than traditional alloys. In this study, CrVTiNbZr high entropy alloy and nitrogen contained CrVTiNbZr(N) nitride coatings were synthesized using high ionization cathodic-arc deposition. A chromium-vanadium alloy target, a titanium-niobium alloy target and a pure zirconium target were used for the deposition. By controlling the nitrogen content and cathode current, the CrNbTiVZr(N) coating with gradient or multilayered composition control possessed different microstructures and mechanical properties. The effect of the nitrogen content on the chemical composition, microstructure and mechanical properties of the CrVTiNbZr(N) coatings was investigated. Compact columnar microstructure was obtained for the synthesized CrVTiNbZr(N) coatings. The CrVTiNbZrN coating (HEAN-N165), which was deposited with nitrogen flow rate of 165 standard cubic centimeters per minute (sccm), exhibited slightly blurred columnar and multilayered structures containing CrVN, TiNbN and ZrN. The design of multilayered CrVTiNbZrN coatings showed good adhesion strength. Improvement of adhesion strength was obtained with composition-gradient interlayers. The CrVTiNbZrN coating with nitrogen content higher than 50 at.% possessed the highest hardness (25.2 GPa) and the resistance to plastic deformation H3/E*2 (0.2 GPa) value, and therefore the lowest wear rate was obtained because of high abrasion wear resistance.


Sign in / Sign up

Export Citation Format

Share Document