Effect of Heat Treatments on the Structural and Mechanical Properties of Ti Thin Films Deposited on Steel Substrates by PVD Method

2010 ◽  
Vol 297-301 ◽  
pp. 88-92 ◽  
Author(s):  
R. Gheriani ◽  
Rachid Halimi

Titanium carbides are well known materials with great scientific and technological interest. The applications of these materials take advantage of the fact that they are very hard, refractory and that they have metallic properties. In this work, we have studied the influence of the heat treatment temperatures (400-1000°C) on the interaction between the titanium thin films and steel substrates. Steel substrates, 100C6 type (AFNOR norms) containing approximately 1 wt % of carbon were coated at 200°C with titanium thin films by magnetron sputtering. The samples were characterized by X-ray diffraction (XRD) and Auger electron spectroscopy (AES). Vikers micro-hardness measurements carried out on the annealed samples showed that the micro-hardness increases with annealing temperature, reaches a maximum (3500 kg/mm2), then decreases progressively. The growth of micro-hardness is due to the diffusion of the carbon, and to the formation of titanium carbide. However, the decrease of micro-hardness is associated with the diffusion of iron and the formation of iron oxide (Fe2O3). At higher temperatures, we note the formation of titanium dioxide (TiO2).

2012 ◽  
Vol 326-328 ◽  
pp. 583-586
Author(s):  
R. Gheriani ◽  
Raouf Mechiakh

The mainly property of thin solid films technologies is their adhesion to the substrates. Because of its good wear resistance and its low coefficient of friction against steel, TiC is an attractive coating material for wear applications such as bearing components. The adhesion of TiC coatings, however suffers from insufficient reproducibility, which is probably due to uncontrolled process parameters. In our work pure titanium thin films of approximately 0.6 µm in thickness were prepared on 100C6 stainless steel substrates by cathodic sputtering. The samples were subjected to secondary vacuum annealing at a temperature between 400 and 1000°C for 30 min. The reaction between substrates and thin films was characterized using an x-ray diffractometer (XRD). Surface morphology and elements diffusion evaluations were carried out by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). The interaction substrates-thin films is accompanied by nucleation and growth of titanium carbide as a function of annealing temperature. By the SEM and EDS results, it appears clearly that the diffusion of manganese to the external layers leads to the destruction of adhesion especially at high temperatures.


2009 ◽  
Vol 609 ◽  
pp. 33-36 ◽  
Author(s):  
J. Olejníček ◽  
S.A. Darveau ◽  
C.L. Exstrom ◽  
Rodney J. Soukup ◽  
Ned J. Ianno ◽  
...  

Thin films of CuIn1-xBxSe2 (CIBS) as absorption layer in single-junction solar cells can potentially grant a higher band gap in comparison with other studied chalcopyrite materials like CuIn1-xGaxSe2 (CIGS) and CuIn1-xAlxSe2 (CIAS). The higher band gap near optimum value ~ 1.4 eV can help to achieve higher efficiency (today 19.5% for CuIn0.74Ga0.26Se2). In this paper are described first results of experiments with effort to produce CIBS films by selenization of CuInB precursor alloy in Se vapors. Resulting material was analyzed by Raman spectroscopy, X-ray diffraction, and Auger electron spectroscopy. Measurements show that formation of CIBS layer is complicated by forming of pure CuInSe2 layer with unwanted Cu2-xSe phases and by accumulation boron near to the substrate.


2008 ◽  
Vol 15 (04) ◽  
pp. 453-458 ◽  
Author(s):  
MANUEL GARCÍA-MÉNDEZ ◽  
SANTOS MORALES-RODRÍGUEZ ◽  
LUCIANO ELIÉZER RAMÍREZ ◽  
EDUARDO G. PÉREZ-TIJERINA

A set of AlN films were deposited by reactive direct current (DC) magnetron sputtering. Films were analyzed with X-ray diffraction and Auger Electron Spectroscopy (AES). There is a correlation between deposition parameters and crystal growth. Depending on the deposition parameters, films can present a hexagonal würzite (P6mm) or cubic zinc-blend (Fm3m) microstructure. Oxygen appears to induce on films a degree of amorphous growth and a distortion of the lattice parameters. For the film with cubic microstructure, AES transitions detected near the surface level at 56 eV and 66 eV were attributed to aluminum-oxide ( Al xOy), AlN , and metallic Al .


1997 ◽  
Vol 482 ◽  
Author(s):  
Yu. V. Melnik ◽  
A. E. Nikolaev ◽  
S. I. Stepanov ◽  
A. S. Zubrilov ◽  
I. P. Nikitina ◽  
...  

AbstractGaN, AIN and AIGaN layers were grown by hydride vapor phase epitaxy. 6H-SiC wafers were used as substrates. Properties of AIN/GaN and AIGaN/GaN structures were investigated. AIGaN growth rate was about 1 μm/min. The thickness of the AIGaN layers ranged from 0.5 to 5 μm. The AIN concentration in AIGaN layers was varied from 9 to 67 mol. %. Samples were characterised by electron beam micro analysis, Auger electron spectroscopy, X-ray diffraction and cathodoluminescence.Electrical measurements performed on AIGaN/GaN/SiC samples indicated that undoped AIGaN layers are conducting at least up to 50 mol. % of AIN.


1990 ◽  
Vol 5 (6) ◽  
pp. 1169-1175 ◽  
Author(s):  
A. D. Berry ◽  
R. T. Holm ◽  
M. Fatemi ◽  
D. K. Gaskill

Films containing the metals copper, yttrium, calcium, strontium, barium, and bismuth were grown by organometallic chemical vapor deposition (OMCVD). Depositions were carried out at atmospheric pressure in an oxygen-rich environment using metal beta-diketonates and triphenylbismuth. The films were characterized by Auger electron spectroscopy, Nomarski and scanning electron microscopy, and x-ray diffraction. The results show that films containing yttrium consisted of Y2O3 with a small amount of carbidic carbon, those with copper and bismuth were mixtures of oxides with no detectable carbon, and those with calcium, strontium, and barium contained carbonates. Use of a partially fluorinated barium beta-diketonate gave films of BaF2 with small amounts of BaCO3.


1989 ◽  
Vol 4 (6) ◽  
pp. 1320-1325 ◽  
Author(s):  
Q. X. Jia ◽  
W. A. Anderson

Effects of hydrofluoric acid (HF) treatment on the properties of Y–Ba–Cu–O oxides were investigated. No obvious etching of bulk Y–Ba–Cu–O and no degradation of zero resistance temperature were observed even though the oxides were placed into 49% HF solution for up to 20 h. Surface passivation of Y–Ba–Cu–O due to HF immersion was verified by subsequent immersion of Y–Ba–Cu–O in water. A thin layer of amorphous fluoride formed on the surface of the Y–Ba–Cu–O during HF treatment, which limited further reaction between Y–Ba–Cu–O and HF, and later reaction with water. Thin film Y–Ba–Cu–O was passivated by HF vapors and showed no degradation in Tc-zero after 30 min immersion in water. The properties of the surface layer of Y–Ba–Cu–O oxide after HF treatment are reported from Auger electron spectroscopy, x-ray diffraction, and scanning electron microscopy studies.


Coatings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 118 ◽  
Author(s):  
Ho-Yun Lee ◽  
Chi-Wei He ◽  
Ying-Chieh Lee ◽  
Da-Chuan Wu

Cu–Mn–Dy resistive thin films were prepared on glass and Al2O3 substrates, which wasachieved by co-sputtering the Cu–Mn alloy and dysprosium targets. The effects of the addition ofdysprosium on the electrical properties and microstructures of annealed Cu–Mn alloy films wereinvestigated. The composition, microstructural and phase evolution of Cu–Mn–Dy films werecharacterized using field emission scanning electron microscopy, transmission electronmicroscopy and X-ray diffraction. All Cu–Mn–Dy films showed an amorphous structure when theannealing temperature was set at 300 °C. After the annealing temperature was increased to 350 °C,the MnO and Cu phases had a significant presence in the Cu–Mn films. However, no MnO phaseswere observed in Cu–Mn–Dy films at 350 °C. Even Cu–Mn–Dy films annealed at 450 °C showedno MnO phases. This is because Dy addition can suppress MnO formation. Cu–Mn alloy filmswith 40% dysprosium addition that were annealed at 300 °C exhibited a higher resistivity of ∼2100 μΩ·cm with a temperature coefficient of resistance of –85 ppm/°C.


2019 ◽  
Vol 397 ◽  
pp. 118-124
Author(s):  
Linda Aissani ◽  
Khaoula Rahmouni ◽  
Laala Guelani ◽  
Mourad Zaabat ◽  
Akram Alhussein

From the hard and anti-corrosions coatings, we found the chromium carbides, these components were discovered by large studies; like thin films since years ago. They were pointed a good quality for the protection of steel, because of their thermal and mechanical properties for this reason, it was used in many fields for protection. Plus: their hardness and their important function in mechanical coatings. The aim of this work joins a study of the effect of the thermal treatment on mechanical and structural properties of the Cr/steel system. Thin films were deposited by cathodic magnetron sputtering on the steel substrates of 100C6, contain 1% wt of carbon. Samples were annealing in vacuum temperature interval between 700 to 1000 °C since 45 min, it forms the chromium carbides. Then pieces are characterising by X-ray diffraction, X-ray microanalysis and scanning electron microscopy. Mechanical properties are analysing by Vickers test. The X-ray diffraction analyse point the formation of the Cr7C3, Cr23C6 carbides at 900°C; they transformed to ternary carbides in a highest temperature, but the Cr3C2 doesn’t appear. The X-ray microanalysis shows the diffusion mechanism between the chromium film and the steel sample; from the variation of: Cr, Fe, C, O elements concentration with the change of annealing temperature. The variation of annealing temperature shows a clean improvement in mechanical and structural properties, like the adhesion and the micro-hardness.


Sign in / Sign up

Export Citation Format

Share Document