Application of Electromagnetic Waves and Dielectric Nanoparticles in Enhanced Oil Recovery

2013 ◽  
Vol 26 ◽  
pp. 135-142 ◽  
Author(s):  
Hasnah Mohd Zaid ◽  
Noor Rasyada Ahmad Latiff ◽  
Noorhana Yahya ◽  
Hasan Soleimani ◽  
Afza Shafie

Enhanced oil recovery (EOR) refers to the recovery of oil that is left behind in a reservoir after primary and secondary recovery methods, either due to exhaustion or no longer economical, through application of thermal, chemical or miscible gas processes. Most conventional methods are not applicable in recovering oil from reservoirs with high temperature and high pressure (HTHP) due to the degradation of the chemicals in the environment. As an alternative, electromagnetic (EM) energy has been used as a thermal method to reduce the viscosity of the oil in a reservoir which increased the production of the oil. Application of nanotechnology in EOR has also been investigated. In this study, a non-invasive method of injecting dielectric nanofluids into the oil reservoir simultaneously with electromagnetic irradiation, with the intention to create disturbance at oil-water interfaces and increase oil production was investigated. During the core displacement tests, it has been demonstrated that in the absence of EM irradiation, both ZnO and Al2O3 nanofluids recovered higher residual oil volumes in comparison with commercial surfactant sodium dodecyl sulfate (SDS). When subjected to EM irradiation, an even higher residual oil was recovered in comparison to the case when no irradiation is present. It was also demonstrated that a change in the viscosity of dielectric nanofluids when irradiated with EM wave will improve sweep efficiency and hence, gives a higher oil recovery.

2021 ◽  
Vol 2 (2) ◽  
pp. 1-11
Author(s):  
Geraldo Andre Raposo Ramos ◽  
Kyari Yates

Hydrocarbon exploration in Angola commenced in 1910 with its first oil recovered in 1955. The proven reserves in Angola are estimated to reach up to 13 billion barrels (2.1 billion m3). Most of the Angolan oil fields are mature or maturing and some are or may be abandoned due to unprofitable recovery limit beyond the conventional type of oil production. The oil recovery is mainly by primary and secondary recovery methods. Apart from the issue of maturity, there is increasing energy demand due to population growth and difficulties in discovering and developing new fields as alternatives to the current oil fields. For incremental and sustained production rate of these fields and in addition to instability of oil prices and concerns about future oil supply, Angola has started to work towards developing affordable and efficient technologies capable of recovering residual oil in reservoirs as well as extend the life of many current fields which can be achieved through the implementation of enhanced oil recovery (EOR). Therefore, this paper discusses the EOR planning strategy from project selection, project implementation and optimization, and field abandonment. It further highlights the mutual benefits that may be derived from a cross-collaboration between the government and other stakeholders in Angola.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3732 ◽  
Author(s):  
Yaohao Guo ◽  
Lei Zhang ◽  
Guangpu Zhu ◽  
Jun Yao ◽  
Hai Sun ◽  
...  

Water flooding is an economic method commonly used in secondary recovery, but a large quantity of crude oil is still trapped in reservoirs after water flooding. A deep understanding of the distribution of residual oil is essential for the subsequent development of water flooding. In this study, a pore-scale model is developed to study the formation process and distribution characteristics of residual oil. The Navier–Stokes equation coupled with a phase field method is employed to describe the flooding process and track the interface of fluids. The results show a significant difference in residual oil distribution at different wetting conditions. The difference is also reflected in the oil recovery and water cut curves. Much more oil is displaced in water-wet porous media than oil-wet porous media after water breakthrough. Furthermore, enhanced oil recovery (EOR) mechanisms of both surfactant and polymer flooding are studied, and the effect of operation times for different EOR methods are analyzed. The surfactant flooding not only improves oil displacement efficiency, but also increases microscale sweep efficiency by reducing the entry pressure of micropores. Polymer weakens the effect of capillary force by increasing the viscous force, which leads to an improvement in sweep efficiency. The injection time of the surfactant has an important impact on the field development due to the formation of predominant pathway, but the EOR effect of polymer flooding does not have a similar correlation with the operation times. Results from this study can provide theoretical guidance for the appropriate design of EOR methods such as the application of surfactant and polymer flooding.


2021 ◽  
Vol 2 (2) ◽  
pp. 1-11
Author(s):  
Geraldo Andre Raposo Ramos ◽  
Kyari Yates

Hydrocarbon exploration in Angola commenced in 1910 with its first oil recovered in 1955. The proven reserves in Angola are estimated to reach up to 13 billion barrels (2.1 billion m3). Most of the Angolan oil fields are mature or maturing and some are or may be abandoned due to unprofitable recovery limit beyond the conventional type of oil production. The oil recovery is mainly by primary and secondary recovery methods. Apart from the issue of maturity, there is increasing energy demand due to population growth and difficulties in discovering and developing new fields as alternatives to the current oil fields. For incremental and sustained production rate of these fields and in addition to instability of oil prices and concerns about future oil supply, Angola has started to work towards developing affordable and efficient technologies capable of recovering residual oil in reservoirs as well as extend the life of many current fields which can be achieved through the implementation of enhanced oil recovery (EOR). Therefore, this paper discusses the EOR planning strategy from project selection, project implementation and optimization, and field abandonment. It further highlights the mutual benefits that may be derived from a cross-collaboration between the government and other stakeholders in Angola.


2018 ◽  
Vol 3 (1) ◽  
pp. 27
Author(s):  
Masrin Damanik ◽  
Sugiatmo Kasmungin ◽  
Rahmat Sudibjo

Tahapan pengembangan perolehan lapangan minyak memiliki tiga tahapan yaitu: primary reocovery, secondary recovery, dan tertiary recovery (Enhanced Oil Recovery). Penelitian menggunakan metode Enhanced Oil Recovery. Penelitian dengan menginjeksikan minyak atau paraffin kedalam batuan yang sudah disaturasi dengan larutan brine, kemudian batuan karbonat tersebut diinjeksikan dengan larutan surfaktan sehingga diperoleh oil recovery setelah diinjeksi dengan surfaktan, setelah itu, dilanjutkan dengan menginjeksikan dengan larutan polimer dan diperoleh oil recovery, selanjutnya dilakukan injeksi brine atau flushing untuk membersihkan minyak ataupun parutan yang masih tertinggal di dalam core. Percobaan dilakukan pada skala laboratorium dengan melakukan percobaan untuk mengetahui nilai oil recovery setelah diinjeksi dengan surfaktan dan polimer. Dari hasil penelitian diperoleh setelah menginjeksikan surfakan diperoleh oil recovery yang lebih besar dari pada oil recovery setelah injeksi polimer dan pada saat proses flushing tidak ada lagi minyak yang diperoleh sweep efficiency dan displacement efficiency.


2021 ◽  
pp. 014459872098020
Author(s):  
Ruizhi Hu ◽  
Shanfa Tang ◽  
Musa Mpelwa ◽  
Zhaowen Jiang ◽  
Shuyun Feng

Although new energy has been widely used in our lives, oil is still one of the main energy sources in the world. After the application of traditional oil recovery methods, there are still a large number of oil layers that have not been exploited, and there is still a need to further increase oil recovery to meet the urgent need for oil in the world economic development. Chemically enhanced oil recovery (CEOR) is considered to be a kind of effective enhanced oil recovery technology, which has achieved good results in the field, but these technologies cannot simultaneously effectively improve oil sweep efficiency, oil washing efficiency, good injectability, and reservoir environment adaptability. Viscoelastic surfactants (VES) have unique micelle structure and aggregation behavior, high efficiency in reducing the interfacial tension of oil and water, and the most important and unique viscoelasticity, etc., which has attracted the attention of academics and field experts and introduced into the technical research of enhanced oil recovery. In this paper, the mechanism and research status of viscoelastic surfactant flooding are discussed in detail and focused, and the results of viscoelastic surfactant flooding experiments under different conditions are summarized. Finally, the problems to be solved by viscoelastic surfactant flooding are introduced, and the countermeasures to solve the problems are put forward. This overview presents extensive information about viscoelastic surfactant flooding used for EOR, and is intended to help researchers and professionals in this field understand the current situation.


2021 ◽  
Author(s):  
Yongsheng Tan ◽  
Qi Li ◽  
Liang Xu ◽  
Xiaoyan Zhang ◽  
Tao Yu

<p>The wettability, fingering effect and strong heterogeneity of carbonate reservoirs lead to low oil recovery. However, carbon dioxide (CO<sub>2</sub>) displacement is an effective method to improve oil recovery for carbonate reservoirs. Saturated CO<sub>2</sub> nanofluids combines the advantages of CO<sub>2</sub> and nanofluids, which can change the reservoir wettability and improve the sweep area to achieve the purpose of enhanced oil recovery (EOR), so it is a promising technique in petroleum industry. In this study, comparative experiments of CO<sub>2</sub> flooding and saturated CO<sub>2</sub> nanofluids flooding were carried out in carbonate reservoir cores. The nuclear magnetic resonance (NMR) instrument was used to clarify oil distribution during core flooding processes. For the CO<sub>2</sub> displacement experiment, the results show that viscous fingering and channeling are obvious during CO<sub>2</sub> flooding, the oil is mainly produced from the big pores, and the residual oil is trapped in the small pores. For the saturated CO<sub>2</sub> nanofluids displacement experiment, the results show that saturated CO<sub>2</sub> nanofluids inhibit CO<sub>2</sub> channeling and fingering, the oil is produced from the big pores and small pores, the residual oil is still trapped in the small pores, but the NMR signal intensity of the residual oil is significantly reduced. The final oil recovery of saturated CO<sub>2</sub> nanofluids displacement is higher than that of CO<sub>2</sub> displacement. This study provides a significant reference for EOR in carbonate reservoirs. Meanwhile, it promotes the application of nanofluids in energy exploitation and CO<sub>2</sub> utilization.</p>


Author(s):  
Ahmed Ragab ◽  
Eman M. Mansour

The enhanced oil recovery phase of oil reservoirs production usually comes after the water/gas injection (secondary recovery) phase. The main objective of EOR application is to mobilize the remaining oil through enhancing the oil displacement and volumetric sweep efficiency. The oil displacement efficiency enhances by reducing the oil viscosity and/or by reducing the interfacial tension, while the volumetric sweep efficiency improves by developing a favorable mobility ratio between the displacing fluid and the remaining oil. It is important to identify remaining oil and the production mechanisms that are necessary to improve oil recovery prior to implementing an EOR phase. Chemical enhanced oil recovery is one of the major EOR methods that reduces the residual oil saturation by lowering water-oil interfacial tension (surfactant/alkaline) and increases the volumetric sweep efficiency by reducing the water-oil mobility ratio (polymer). In this chapter, the basic mechanisms of different chemical methods have been discussed including the interactions of different chemicals with the reservoir rocks and fluids. In addition, an up-to-date status of chemical flooding at the laboratory scale, pilot projects and field applications have been reported.


2021 ◽  
Author(s):  
Ahmad Ali Manzoor

Chemical-based enhanced oil recovery (EOR) techniques utilize the injection of chemicals, such as solutions of polymers, alkali, and surfactants, into oil reservoirs for incremental recovery. The injection of a polymer increases the viscosity of the injected fluid and alters the water-to-oil mobility ratio which in turn improves the volumetric sweep efficiency. This research study aims to investigate strategies that would help intensify oil recovery with the polymer solution injection. For that purpose, we utilize a lab-scale, cylindrical heavy oil reservoir model. Furthermore, a dynamic mathematical black oil model is developed based on cylindrical physical model of homogeneous porous medium. The experiments are carried out by injecting classic and novel partially hydrolyzed polyacrylamide solutions (concentration: 0.1-0.5 wt %) with 1 wt % brine into the reservoir at pressures in the range, 1.03-3.44 MPa for enhanced oil recovery. The concentration of the polymer solution remains constant throughout the core flooding experiment and is varied for other subsequent experimental setup. Periodic pressure variations between 2.41 and 3.44 MPa during injection are found to increase the heavy oil recovery by 80% original-oil-in-place (OOIP). This improvement is approximately 100% more than that with constant pressure injection at the maximum pressure of 3.44 MPa. The experimental oil recoveries are in fair agreement with the model calculated oil production with a RMS% error in the range of 5-10% at a maximum constant pressure of 3.44 MPa.


Sign in / Sign up

Export Citation Format

Share Document