Al2O3 Nanopowders, a Suitable Compound for Active Control of Biofouling

2015 ◽  
Vol 32 ◽  
pp. 71-80
Author(s):  
Mohsen Mehregan ◽  
Hossein Soltaninejad ◽  
Behnaz Toluei Nia ◽  
Hadi Zare-Zardini ◽  
Masoud Zare-Shehneh ◽  
...  

The formation of biofilm (Biofouling) in different surface is the great concern in types of fields, especially in medical and health system as well as in membrane technology. The present study deals with the synthesis and characterization of Al2O3 nanopowders with antibacterial activity which can be a potentially utilized material for biocompatible implants. Nanostructure was synthesized based on sol-gel method and then, crystallite size, and microstructural and morphological characterization of nanostructure were determined by X-ray diffraction, electron-microscopic techniques - scanning electron microscopy (SEM) and transmission electron microscopy (TEM). According to X-ray diffraction, the value of particle size for Al2O3 nanopowders is 20.85 nm. In the following, the antibacterial activity of Al2O3 nanoparticles was assessed on three gram positive and three gram negative bacteria by radial diffusion assay and measurement of minimum inhibitory concentration (MIC). The toxicity of Al2O3 nanopowders on blood cells was also assessed. The results showed that this nanostructure has potent antibacterial activity against gram positive and gram negative bacteria. The synthesized Al2O3 nanopowders showed the antimicrobial activity against antibiotic resistant bacterium, Staphylococcus aureus. Significant antibacterial activity of this nanostructure was seen to have a greatest effect on Bacillus cereus with the MIC value of 9.2 μg/ml; while, among bacterial strains, Salmonellatyphimurium was investigated to be the most resistant one with the MIC of 35.6 μg/ml. Al2O3 nanopowders showed no toxicity on blood cells. according to acquired data in this study, Al2O3 nanopowders may be a good material for inhibition of biofilm formation.

1997 ◽  
Vol 50 (8) ◽  
pp. 861 ◽  
Author(s):  
Shaheen Faizi ◽  
Bina Shaheen Siddiqui ◽  
Rubeena Saleem ◽  
Farzana Akhtar ◽  
Khursheed Ali Khan ◽  
...  

Quinolin-8-ol (1) on reaction with 2,6-dichloroaniline and m-nitrobenzaldehyde afforded 7-(α-hydroxy- m-nitrobenzyl)quinolin-8-ol (2), which is an unusual Mannich reaction product. The structure of (2) was determined by spectroscopic and single-crystal X-ray diffraction studies. Preliminary antimicrobial screening showed that (1) and (2) have activity against a large number of Gram-positive and Gram-negative bacteria.


2021 ◽  
Vol 12 (4) ◽  
pp. 2523-2529
Author(s):  
Daniel Sam N ◽  
Anish C I ◽  
Sabeena G ◽  
Rajaduraipandian S ◽  
Manobala ◽  
...  

Sol gel methods were used for the study of the antimicrobial activity of Cd-TiO2 against gram-negative and positive bacteria. These Cd-TiO2 have been characterized by various optical and techniques. They have been exhibited by X-ray diffraction, scanning electron microscopy, ultraviolet spectroscopy, and infrared spectroscopy. The structures of the various XRD patterns indicate that the product has a structure. The particle size of Cd-TiO2 is 35nm. The SEM images confirm the spherical appearance of the sample. The energy X-ray spectra have been confirmed as well and then C, O, Ti, Cd, Pt element are present in Cd-TiO2. The weight percentage of Cadmium is 5.8%, Ti is 51.03%, C is 5.13% and O is 31.75% in Cd-TiO2. BET image shows that the major pore size distribution of Cd-TiO2 is ranged from 2.24 nm. The Cd-TiO2 that the antibacterial activity when tested against the pathogens only gram-negative bacteria such as Pseudomonas. The zone of minimum inhibition concentration was measured in a range of 20mm in 25μl and 30mm in 100μl.


2023 ◽  
Vol 83 ◽  
Author(s):  
S. Mumtaz ◽  
S. Mumtaz ◽  
S. Ali ◽  
H. M. Tahir ◽  
S. A. R. Kazmi ◽  
...  

Abstract Now a day’s multidrug resistance phenomenon has become the main cause for concern and there has been an inadequate achievement in the development of novel antibiotics to treat the bacterial infections. Therefore, there is an unmet need to search for novel adjuvant. Vitamin C is one such promising adjuvant. The present study was aimed to elucidate the antibacterial effect of vitamin C at various temperatures (4°C, 37°C and 50°C) and pH (3, 8, and 11), against Gram-positive and Gram-negative bacteria at various concentrations (5-20 mg/ml) through agar well diffusion method. Growth inhibition of all bacterial strains by vitamin C was concentration-dependent. Vitamin C significantly inhibited the growth of Gram-positive bacteria: Bacillus licheniformis (25.3 ± 0.9 mm), Staphylococcus aureus (22.0 ± 0.6 mm), Bacillus subtilis (19.3 ± 0.3 mm) and Gram-negative bacteria: Proteus mirabilis (27.67 ± 0.882 mm), Klebsiella pneumoniae (21.33±0.9 mm), Pseudomonas aeruginosa (18.0 ± 1.5 mm) and Escherichia coli (18.3 ± 0.3 mm). The stability of vitamin C was observed at various pH values and various temperatures. Vitamin C showed significant antibacterial activity at acidic pH against all bacterial strains. Vitamin C remained the stable at different temperatures. It was concluded that vitamin C is an effective and safe antibacterial agent that can be used in the future as an adjunct treatment option to combat infections in humans.


2020 ◽  
Vol 73 (12) ◽  
pp. 1226
Author(s):  
Dimuthu C. Senevirathna ◽  
Rebekah N. Duffin ◽  
Liam J. Stephens ◽  
Megan E. Herdman ◽  
Melissa V. Werrett ◽  
...  

Diphenylphosphinothioic acid (HSP(=O)Ph2) and diphenylphosphinodithioic acid (HSP(=S)Ph2) have been used to synthesise four BiIII complexes: 1 [Bi(SP(=O)Ph2)3], 2 [BiPh(SP(=O)Ph2)2], 3 [BiPh2(SP(=O)Ph2)], and 4 [Bi(SP(=S)Ph2)3], using BiPh3 and [Bi(OtBu)3] as bismuth sources. The complexes have been characterised by NMR spectroscopy, mass spectrometry, infrared spectroscopy, powder X-ray diffraction, and singe crystal X-ray crystallography (2–4). Biological studies indicated that despite complexes 2 and 3 reducing mammalian cell viability, their antibacterial activity provides a good degree of selectivity towards both Gram positive and Gram negative bacterial strains. The minimum inhibitory concentrations for complexes 2 and 3 are in the range of 0.52–5.5µM towards the bacteria tested. Homoleptic complexes 1 and 4 were generally less active towards both bacterial and mammalian cells.


2021 ◽  
Vol 21 (10) ◽  
pp. 5131-5142
Author(s):  
Leila Shirmohammadzadeh ◽  
Hadi Fallah Moafi ◽  
Abdollah Fallah Shojaei

In this research, strontium titanate (SrTiO3), barium titanate (BaTiO3), barium strontium titanate (BaSrTiO3), and Ag-doped BaSrTiO3 nanocomposites with different Ag contents were fabricated using the sol–gel chemical route. The prepared samples were characterized by several techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), differential reflectance spectroscopy (DRS), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), inductively coupled plasma spectroscopy (ICP), and Brunauer-Emmett-Teller (BET) measurement. The EDS results indicated that the synthesized nanoparticles had a cube perovskite-like structure. The EDS and ICP results revealed that Ag was doped into the Ba0.5Sr0.5TiO3 structure. The SEM and TEM images demonstrated that the particle size of 15 mol% Ag-doped Ba0.5Sr0.5TiO3 was smaller than that of pure Ba0.5Sr0.5TiO3 as confirmed by surface area results. The photocatalytic properties of undoped titanate samples and Ag-doped Ba0.5Sr0.5TiO3 were studied by the photodecomposition of Eosin yellowish (EY) and methylene blue (MB) dyes. The results illustrated that the photodegradation efficiency of the Ag-doped Ba0.5Sr0.5TiO3 was far higher than the undoped titanate sample, and the optimum Ag doping was 15 mol%. The antibacterial activities of pure Ba0.5Sr0.5TiO3 and Ag-doped Ba0.5Sr0.5Ti03 were studied against Staphylococcus aureus as Gram-positive (+) and Pseudomonas aeruginosa and Escherichia coli as Gram-negative (−) bacteria. In comparison with the bare Ba0.5Sr0.5TiO3 nanoparticles, the Ag-doped sample showed a significant enhancement in antibacterial activities against both Gram-negative and Gram-positive bacterial strains.


2008 ◽  
Vol 73 (12) ◽  
pp. 1153-1160 ◽  
Author(s):  
S.O. Podunavac-Kuzmanovic ◽  
V.M. Leovac ◽  
D.D. Cvetkovic

The antibacterial activities of cobalt(II) complexes with two series of benzimidazoles were evaluated in vitro against three Gram-positive bacterial strains (Bacillus cereus, Staphylococcus aureus, and Sarcina lutea) and one Gram-negative isolate (Pseudomonas aeruginosa). The minimum inhibitory concentration was determined for all the complexes. The majority of the investtigated complexes displayed in vitro inhibitory activity against very persistent bacteria. They were found to be more active against Gram-positive than Gram-negative bacteria. It may be concluded that the antibacterial activity of the compounds is related to the cell wall structure of the tested bacteria. Comparing the inhibitory activities of the tested complexes, it was found that the 1-substituted- -2-aminobenzimidazole derivatives were more active than complexes of 1-substituted- 2-amino-5,6-dimethylbenzimidazoles. The effect of chemical structure on the antibacterial activity is discussed.


Toxins ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 771
Author(s):  
Lipeng Zhong ◽  
Jiye Liu ◽  
Shiyu Teng ◽  
Zhixiong Xie

The abuse of antibiotics and the consequent increase of drug-resistant bacteria constitute a serious threat to human health, and new antibiotics are urgently needed. Research shows that antimicrobial peptides produced by natural organisms are potential substitutes for antibiotics. Based on Deinagkistrodonacutus (known as five-pacer viper) genome bioinformatics analysis, we discovered a new cathelicidin antibacterial peptide which was called FP-CATH. Circular dichromatic analysis showed a typical helical structure. FP-CATH showed broad-spectrum antibacterial activity. It has antibacterial activity to Gram-negative bacteria and Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA). The results of transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed that FP-CATH could cause the change of bacterial cell integrity, having a destructive effect on Gram-negative bacteria and inducing Gram-positive bacterial surface formation of vesicular structure. FP-CATH could bind to LPS and showed strong binding ability to bacterial DNA. In vivo, FP-CATH can improve the survival rate of nematodes in bacterial invasion experiments, and has a certain protective effect on nematodes. To sum up, FP-CATH is likely to play a role in multiple mechanisms of antibacterial action by impacting bacterial cell integrity and binding to bacterial biomolecules. It is hoped that the study of FP-CATH antibacterial mechanisms will prove useful for development of novel antibiotics.


2018 ◽  
Vol 10 (6) ◽  
pp. 224 ◽  
Author(s):  
Manyasree D. ◽  
Kiranmayi P. ◽  
Venkata R Kolli

Objective: In the present study the antibacterial activity of zinc oxide (ZnO) nanoparticles was investigated against gram negative (Escherichia coli and Proteus vulgaris) and gram positive (Staphylococcus aureus and Streptococcus mutans) organisms.Methods: The synthesis of ZnO nanoparticles was carried out by co-precipitation method using zinc sulfate and sodium hydroxide as precursors. These nanoparticles were characterized by XRD (X-Ray Diffraction), FTIR (Fourier Transform Infrared Radiation), UV-Visible spectroscopy and SEM (Scanning Electron Microscope) with EDX (Energy Dispersive X-ray analysis). As well as antibacterial activity and minimum inhibitory concentration of the nanoparticles were carried out by agar well diffusion method and broth dilution method respectively against gram negative (Escherichia coli and Proteus vulgaris) and gram positive (Staphylococcus aureus and Streptococcus mutans) bacteria.Results: The average crystallite size of ZnO nanoparticles was found to be 35 nm by X-ray diffraction. The vibration bands at 450 and 603 cm-1 which were assigned for ZnO stretching vibration were observed in FTIR spectrum. The optical absorption band at 383 nm was obtained from UV-Visible spectrum. Spherical shape morphology was observed in SEM studies. The antibacterial assay clearly expressed that E. coli showed a maximum zone of inhibition (32±0.20 mm) followed by Proteus vulgaris (30±0.45 nm) at 50 mg/ml concentration of ZnO nanoparticles.Conclusion: Zinc oxide nanoparticles have exhibited good antibacterial activity with gram negative bacteria when compared to gram positive bacteria.


2017 ◽  
Vol 9 (6) ◽  
pp. 71 ◽  
Author(s):  
Manyasree D ◽  
Kiran Mayi Peddi ◽  
Ravikumar R

Objective: In the present study copper oxide (CuO) nanoparticles were synthesized and characterized. The antibacterial activity of CuO nanoparticles was carried out against Escherichia coli, Proteus vulgaris, Staphylococcus aureus and Streptococcus mutans.Methods: The synthesis was carried out by coprecipitation method using copper sulfate and sodium hydroxide as precursors. The synthesized copper oxide nanoparticles were characterized by using X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FT-IR), UV-vis spectroscopy and scanning electron microscope (SEM) with Energy Dispersive X-ray Analysis (EDX) techniques. Besides, this study determines the antibacterial activity and minimum inhibitory concentration (MIC) of CuO nanoparticles against gram-positive (Staphylococcus aureus and Streptococcus mutans) and gram-negative (E. coli and Proteus vulgaris) bacteria.Results: The average crystallite size of CuO nanoparticles was found to be 19 nm by X-ray diffraction. FT-IR spectrum exhibited vibrational modes at 432 cm-1, 511 cm-1 and 611 cm-1were assigned for Cu-O stretching vibration. According to UV-Vis spectrum, two bands were observed at 402 nm and 422 nm. ED’s spectrum shows only elemental copper (Cu) and oxide (O) and no other elemental impurity was observed. The antimicrobial assay revealed that Proteus vulgaris showed a maximum zone of inhibition (37 mm) at 50 mg/ml concentration of CuO nanoparticles.Conclusion: In conclusion, copper oxide is a good antibacterial agent against both gram positive and gram-negative organisms.


Author(s):  
Manyasree D. ◽  
Kiranmayi P. ◽  
Ravi Kumar R. V. S. S. N.

Objective: In the present study, synthesized alumina (Al2O3) nanoparticles were characterized and their antibacterial activity against gram positive and gram negative organisms were studied.Methods: The synthesis was carried out by coprecipitation method using aluminium sulfate and NaOH as precursors. The synthesized aluminium oxide nanoparticles were characterized by using X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) with Energy Dispersive X-ray Analysis (EDX) techniques. Besides, this study determines the antibacterial activity and minimum inhibitory concentration (MIC) of Al2O3 nanoparticles against gram-positive (Staphylococcus aureus and Streptococcus mutans) and gram-negative (E. coli and Proteus vulgaris) bacteria. Results: The average crystallite size of Al2O3 nanoparticles was found to be 35 nm by X-ray diffraction. FT-IR spectrum exhibited the peaks at 615 and 636 were assigned to the aluminium oxide stretching. The EDX measurements indicated the presence of Al along with O peaks. It indicates the purity of the sample. The antimicrobial assay revealed that E. coli showed a maximum zone of inhibition (39 mm) at 50 mg/ml concentration of Al2O3 nanoparticles.Conclusion: In conclusion, aluminium oxide is a good antibacterial agent against both gram positive and gram-negative organisms.


Sign in / Sign up

Export Citation Format

Share Document