Bismuth(III) Thiophosphinates: Understanding How a Small Atomic Change Influences Antibacterial Activity and Mammalian Cell Viability

2020 ◽  
Vol 73 (12) ◽  
pp. 1226
Author(s):  
Dimuthu C. Senevirathna ◽  
Rebekah N. Duffin ◽  
Liam J. Stephens ◽  
Megan E. Herdman ◽  
Melissa V. Werrett ◽  
...  

Diphenylphosphinothioic acid (HSP(=O)Ph2) and diphenylphosphinodithioic acid (HSP(=S)Ph2) have been used to synthesise four BiIII complexes: 1 [Bi(SP(=O)Ph2)3], 2 [BiPh(SP(=O)Ph2)2], 3 [BiPh2(SP(=O)Ph2)], and 4 [Bi(SP(=S)Ph2)3], using BiPh3 and [Bi(OtBu)3] as bismuth sources. The complexes have been characterised by NMR spectroscopy, mass spectrometry, infrared spectroscopy, powder X-ray diffraction, and singe crystal X-ray crystallography (2–4). Biological studies indicated that despite complexes 2 and 3 reducing mammalian cell viability, their antibacterial activity provides a good degree of selectivity towards both Gram positive and Gram negative bacterial strains. The minimum inhibitory concentrations for complexes 2 and 3 are in the range of 0.52–5.5µM towards the bacteria tested. Homoleptic complexes 1 and 4 were generally less active towards both bacterial and mammalian cells.

2015 ◽  
Vol 32 ◽  
pp. 71-80
Author(s):  
Mohsen Mehregan ◽  
Hossein Soltaninejad ◽  
Behnaz Toluei Nia ◽  
Hadi Zare-Zardini ◽  
Masoud Zare-Shehneh ◽  
...  

The formation of biofilm (Biofouling) in different surface is the great concern in types of fields, especially in medical and health system as well as in membrane technology. The present study deals with the synthesis and characterization of Al2O3 nanopowders with antibacterial activity which can be a potentially utilized material for biocompatible implants. Nanostructure was synthesized based on sol-gel method and then, crystallite size, and microstructural and morphological characterization of nanostructure were determined by X-ray diffraction, electron-microscopic techniques - scanning electron microscopy (SEM) and transmission electron microscopy (TEM). According to X-ray diffraction, the value of particle size for Al2O3 nanopowders is 20.85 nm. In the following, the antibacterial activity of Al2O3 nanoparticles was assessed on three gram positive and three gram negative bacteria by radial diffusion assay and measurement of minimum inhibitory concentration (MIC). The toxicity of Al2O3 nanopowders on blood cells was also assessed. The results showed that this nanostructure has potent antibacterial activity against gram positive and gram negative bacteria. The synthesized Al2O3 nanopowders showed the antimicrobial activity against antibiotic resistant bacterium, Staphylococcus aureus. Significant antibacterial activity of this nanostructure was seen to have a greatest effect on Bacillus cereus with the MIC value of 9.2 μg/ml; while, among bacterial strains, Salmonellatyphimurium was investigated to be the most resistant one with the MIC of 35.6 μg/ml. Al2O3 nanopowders showed no toxicity on blood cells. according to acquired data in this study, Al2O3 nanopowders may be a good material for inhibition of biofilm formation.


1997 ◽  
Vol 50 (8) ◽  
pp. 861 ◽  
Author(s):  
Shaheen Faizi ◽  
Bina Shaheen Siddiqui ◽  
Rubeena Saleem ◽  
Farzana Akhtar ◽  
Khursheed Ali Khan ◽  
...  

Quinolin-8-ol (1) on reaction with 2,6-dichloroaniline and m-nitrobenzaldehyde afforded 7-(α-hydroxy- m-nitrobenzyl)quinolin-8-ol (2), which is an unusual Mannich reaction product. The structure of (2) was determined by spectroscopic and single-crystal X-ray diffraction studies. Preliminary antimicrobial screening showed that (1) and (2) have activity against a large number of Gram-positive and Gram-negative bacteria.


2010 ◽  
Vol 63 (11) ◽  
pp. 1550 ◽  
Author(s):  
Nawong Boonnak ◽  
Achjana Khamthip ◽  
Chatchanok Karalai ◽  
Suchada Chantrapromma ◽  
Chanita Ponglimanont ◽  
...  

Three new xanthones, pruniflorone M-O (1–3), and a new xanthonolignoid, 3-methoxy-5′-demethoxycadensin G (4), were isolated from the green fruits of Cratoxylum formosum ssp. pruniflorum along with three known xanthones (5–7) and a known flavonoid (8). Their structures were elucidated by spectroscopic methods and the structure of 1 was also determined by X-ray crystallography. Compounds 2 and 7 showed potent nitric oxide inhibitory activity with IC50 values of 4.4 and 4.3 μM, respectively. Moreover, 7 also showed strong antibacterial activity against both Gram-positive and Gram-negative bacteria with an MIC value of 4.67 μg mL–1.


2012 ◽  
Vol 1413 ◽  
Author(s):  
Georgios A. Sotiriou ◽  
Sotiris E. Pratsinis

ABSTRACTThe antibacterial activity of nanosilver against Gram negative Escherichia coli bacteria is investigated by immobilizing nanosilver on nanostructured silica particles and closely controlling Ag content and size. These Ag/SiO2 nanoparticles were characterized by S/TEM, EDX spectroscopy, X-ray diffraction. The antibacterical activity of these composite samples was investigated for a constant composite particle concentration. The highest activity was observed for the higher silver content particles.


2018 ◽  
Vol 10 (6) ◽  
pp. 224 ◽  
Author(s):  
Manyasree D. ◽  
Kiranmayi P. ◽  
Venkata R Kolli

Objective: In the present study the antibacterial activity of zinc oxide (ZnO) nanoparticles was investigated against gram negative (Escherichia coli and Proteus vulgaris) and gram positive (Staphylococcus aureus and Streptococcus mutans) organisms.Methods: The synthesis of ZnO nanoparticles was carried out by co-precipitation method using zinc sulfate and sodium hydroxide as precursors. These nanoparticles were characterized by XRD (X-Ray Diffraction), FTIR (Fourier Transform Infrared Radiation), UV-Visible spectroscopy and SEM (Scanning Electron Microscope) with EDX (Energy Dispersive X-ray analysis). As well as antibacterial activity and minimum inhibitory concentration of the nanoparticles were carried out by agar well diffusion method and broth dilution method respectively against gram negative (Escherichia coli and Proteus vulgaris) and gram positive (Staphylococcus aureus and Streptococcus mutans) bacteria.Results: The average crystallite size of ZnO nanoparticles was found to be 35 nm by X-ray diffraction. The vibration bands at 450 and 603 cm-1 which were assigned for ZnO stretching vibration were observed in FTIR spectrum. The optical absorption band at 383 nm was obtained from UV-Visible spectrum. Spherical shape morphology was observed in SEM studies. The antibacterial assay clearly expressed that E. coli showed a maximum zone of inhibition (32±0.20 mm) followed by Proteus vulgaris (30±0.45 nm) at 50 mg/ml concentration of ZnO nanoparticles.Conclusion: Zinc oxide nanoparticles have exhibited good antibacterial activity with gram negative bacteria when compared to gram positive bacteria.


2017 ◽  
Vol 9 (6) ◽  
pp. 71 ◽  
Author(s):  
Manyasree D ◽  
Kiran Mayi Peddi ◽  
Ravikumar R

Objective: In the present study copper oxide (CuO) nanoparticles were synthesized and characterized. The antibacterial activity of CuO nanoparticles was carried out against Escherichia coli, Proteus vulgaris, Staphylococcus aureus and Streptococcus mutans.Methods: The synthesis was carried out by coprecipitation method using copper sulfate and sodium hydroxide as precursors. The synthesized copper oxide nanoparticles were characterized by using X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FT-IR), UV-vis spectroscopy and scanning electron microscope (SEM) with Energy Dispersive X-ray Analysis (EDX) techniques. Besides, this study determines the antibacterial activity and minimum inhibitory concentration (MIC) of CuO nanoparticles against gram-positive (Staphylococcus aureus and Streptococcus mutans) and gram-negative (E. coli and Proteus vulgaris) bacteria.Results: The average crystallite size of CuO nanoparticles was found to be 19 nm by X-ray diffraction. FT-IR spectrum exhibited vibrational modes at 432 cm-1, 511 cm-1 and 611 cm-1were assigned for Cu-O stretching vibration. According to UV-Vis spectrum, two bands were observed at 402 nm and 422 nm. ED’s spectrum shows only elemental copper (Cu) and oxide (O) and no other elemental impurity was observed. The antimicrobial assay revealed that Proteus vulgaris showed a maximum zone of inhibition (37 mm) at 50 mg/ml concentration of CuO nanoparticles.Conclusion: In conclusion, copper oxide is a good antibacterial agent against both gram positive and gram-negative organisms.


Author(s):  
Manyasree D. ◽  
Kiranmayi P. ◽  
Ravi Kumar R. V. S. S. N.

Objective: In the present study, synthesized alumina (Al2O3) nanoparticles were characterized and their antibacterial activity against gram positive and gram negative organisms were studied.Methods: The synthesis was carried out by coprecipitation method using aluminium sulfate and NaOH as precursors. The synthesized aluminium oxide nanoparticles were characterized by using X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) with Energy Dispersive X-ray Analysis (EDX) techniques. Besides, this study determines the antibacterial activity and minimum inhibitory concentration (MIC) of Al2O3 nanoparticles against gram-positive (Staphylococcus aureus and Streptococcus mutans) and gram-negative (E. coli and Proteus vulgaris) bacteria. Results: The average crystallite size of Al2O3 nanoparticles was found to be 35 nm by X-ray diffraction. FT-IR spectrum exhibited the peaks at 615 and 636 were assigned to the aluminium oxide stretching. The EDX measurements indicated the presence of Al along with O peaks. It indicates the purity of the sample. The antimicrobial assay revealed that E. coli showed a maximum zone of inhibition (39 mm) at 50 mg/ml concentration of Al2O3 nanoparticles.Conclusion: In conclusion, aluminium oxide is a good antibacterial agent against both gram positive and gram-negative organisms.


Biomedicine ◽  
2021 ◽  
Vol 41 (3) ◽  
pp. 565-575
Author(s):  
Sushmit Mukherjee ◽  
Aparna Shil ◽  
Kunal Pal ◽  
Shinjini Pal ◽  
MausumiSikdar (ne’e Bhakta)

Introduction and Aim:Emergence of different applications of metallic nanoparticles in various field leads to innovation of new synthetic strategies. Besides being non-toxic to mammalian cells, zinc oxide nanoparticles (ZnONPs) has gained paramount attention due to its excellent antibacterial potential. This study illustrates a comparative analysis of antibacterial and cytotoxic activity of both phytochemically synthesized and chemically synthesized commercially available ZnONPs.   Materials and Methods:As a source of reducing agent, leaf extract of Coriander sativum was employed in case of green synthesis of ZnONPs. Several techniques, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Dynamic light Scattering (DLS) and Field emission Scanning Electron Microscopy (FESEM) were performed to characterize both green synthesized and commercial ZnONPs.Antibacterial potential of both theZnONPs were investigated on Gram-positive and Gram-negative bacterial strains to draw a correlative outcome. Hepatocellular cell line was used to determine the cytotoxic activity of both ZnONPs.   Results:Both the nanoparticles showed antibacterial and cytotoxic activity with measurable degree of difference.   Conclusion: From these studies it can be concluded, the green synthesized nanoparticles showed greater antibacterial as well as cytotoxic activity in comparison to the commercial ZnONPs.  


2021 ◽  
Vol 2063 (1) ◽  
pp. 012003
Author(s):  
Ali Z Al-Rubaie ◽  
Shaker A S Al-Jadaan ◽  
Anwar T Abd Al-Wahed ◽  
Ibraheem A Raadah

Abstract Ten chalcogen and mercury bearing compounds based on 4-aminobenzoic acid (i.e., (2-amino-5-(ethoxycarbonyl)phenyl)mercury(II) chloride (1), (2-amino-5-(ethoxycarbonyl)phenyl) phenyl selenide (2), (2-amino-5-(ethoxycarbonyl)phenyl) phenyl telluride (3), (4-carboxyphenyl)mercury(II) chloride (4), 4-selenocyanatobenzoic acid (5), 4-tellurocyanatobenzoic acid (6), bis(4-carboxyphenyl) diselenide (7) bis(4-carboxyphenyl) ditelluride (8), bis(4-carboxyphenyl) selenide (9) bis(4-carboxyphenyl) telluride (10) were prepared and characterized by various spectroscopic techniques. All compounds were screened for antibacterial activity against Gram-positive bacterial strains of Staphylococcus aureus and the Gram-negative bacteria Escherichia coli by using the disk diffusion technique. The antibacterial activity of these compounds was dependent on the molecular structure of the compounds, and the bacterial strain under consideration.


Author(s):  
Natalia Pakharukova ◽  
Minna Tuittila ◽  
Sari Paavilainen ◽  
Anton Zavialov

The attachment of many Gram-negative pathogens to biotic and abiotic surfaces is mediated by fimbrial adhesins, which are assembledviathe classical, alternative and archaic chaperone–usher (CU) pathways. The archaic CU fimbrial adhesins have the widest phylogenetic distribution, yet very little is known about their structure and mechanism of assembly. To elucidate the biogenesis of archaic CU systems, structural analysis of the Csu fimbriae, which are used byAcinetobacter baumanniito form stable biofilms and cause nosocomial infection, was focused on. The major fimbriae subunit CsuA/B complexed with the CsuC chaperone was purified from the periplasm ofEscherichia colicells co-expressing CsuA/B and CsuC, and the complex was crystallized in PEG 3350 solution using the hanging-drop vapour-diffusion method. Selenomethionine-labelled CsuC–CsuA/B complex was purified and crystallized under the same conditions. The crystals diffracted to 2.40 Å resolution and belonged to the hexagonal space groupP6422, with unit-cell parametersa=b= 94.71,c = 187.05 Å, α = β = 90, γ = 120°. Initial phases were derived from a single anomalous diffraction (SAD) experiment using the selenomethionine derivative.


Sign in / Sign up

Export Citation Format

Share Document