scholarly journals CuO NANOPARTICLES: SYNTHESIS, CHARACTERIZATION AND THEIR BACTERICIDAL EFFICACY

2017 ◽  
Vol 9 (6) ◽  
pp. 71 ◽  
Author(s):  
Manyasree D ◽  
Kiran Mayi Peddi ◽  
Ravikumar R

Objective: In the present study copper oxide (CuO) nanoparticles were synthesized and characterized. The antibacterial activity of CuO nanoparticles was carried out against Escherichia coli, Proteus vulgaris, Staphylococcus aureus and Streptococcus mutans.Methods: The synthesis was carried out by coprecipitation method using copper sulfate and sodium hydroxide as precursors. The synthesized copper oxide nanoparticles were characterized by using X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FT-IR), UV-vis spectroscopy and scanning electron microscope (SEM) with Energy Dispersive X-ray Analysis (EDX) techniques. Besides, this study determines the antibacterial activity and minimum inhibitory concentration (MIC) of CuO nanoparticles against gram-positive (Staphylococcus aureus and Streptococcus mutans) and gram-negative (E. coli and Proteus vulgaris) bacteria.Results: The average crystallite size of CuO nanoparticles was found to be 19 nm by X-ray diffraction. FT-IR spectrum exhibited vibrational modes at 432 cm-1, 511 cm-1 and 611 cm-1were assigned for Cu-O stretching vibration. According to UV-Vis spectrum, two bands were observed at 402 nm and 422 nm. ED’s spectrum shows only elemental copper (Cu) and oxide (O) and no other elemental impurity was observed. The antimicrobial assay revealed that Proteus vulgaris showed a maximum zone of inhibition (37 mm) at 50 mg/ml concentration of CuO nanoparticles.Conclusion: In conclusion, copper oxide is a good antibacterial agent against both gram positive and gram-negative organisms.

2018 ◽  
Vol 10 (6) ◽  
pp. 224 ◽  
Author(s):  
Manyasree D. ◽  
Kiranmayi P. ◽  
Venkata R Kolli

Objective: In the present study the antibacterial activity of zinc oxide (ZnO) nanoparticles was investigated against gram negative (Escherichia coli and Proteus vulgaris) and gram positive (Staphylococcus aureus and Streptococcus mutans) organisms.Methods: The synthesis of ZnO nanoparticles was carried out by co-precipitation method using zinc sulfate and sodium hydroxide as precursors. These nanoparticles were characterized by XRD (X-Ray Diffraction), FTIR (Fourier Transform Infrared Radiation), UV-Visible spectroscopy and SEM (Scanning Electron Microscope) with EDX (Energy Dispersive X-ray analysis). As well as antibacterial activity and minimum inhibitory concentration of the nanoparticles were carried out by agar well diffusion method and broth dilution method respectively against gram negative (Escherichia coli and Proteus vulgaris) and gram positive (Staphylococcus aureus and Streptococcus mutans) bacteria.Results: The average crystallite size of ZnO nanoparticles was found to be 35 nm by X-ray diffraction. The vibration bands at 450 and 603 cm-1 which were assigned for ZnO stretching vibration were observed in FTIR spectrum. The optical absorption band at 383 nm was obtained from UV-Visible spectrum. Spherical shape morphology was observed in SEM studies. The antibacterial assay clearly expressed that E. coli showed a maximum zone of inhibition (32±0.20 mm) followed by Proteus vulgaris (30±0.45 nm) at 50 mg/ml concentration of ZnO nanoparticles.Conclusion: Zinc oxide nanoparticles have exhibited good antibacterial activity with gram negative bacteria when compared to gram positive bacteria.


Author(s):  
Manyasree D. ◽  
Kiranmayi P. ◽  
Ravi Kumar R. V. S. S. N.

Objective: In the present study, synthesized alumina (Al2O3) nanoparticles were characterized and their antibacterial activity against gram positive and gram negative organisms were studied.Methods: The synthesis was carried out by coprecipitation method using aluminium sulfate and NaOH as precursors. The synthesized aluminium oxide nanoparticles were characterized by using X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) with Energy Dispersive X-ray Analysis (EDX) techniques. Besides, this study determines the antibacterial activity and minimum inhibitory concentration (MIC) of Al2O3 nanoparticles against gram-positive (Staphylococcus aureus and Streptococcus mutans) and gram-negative (E. coli and Proteus vulgaris) bacteria. Results: The average crystallite size of Al2O3 nanoparticles was found to be 35 nm by X-ray diffraction. FT-IR spectrum exhibited the peaks at 615 and 636 were assigned to the aluminium oxide stretching. The EDX measurements indicated the presence of Al along with O peaks. It indicates the purity of the sample. The antimicrobial assay revealed that E. coli showed a maximum zone of inhibition (39 mm) at 50 mg/ml concentration of Al2O3 nanoparticles.Conclusion: In conclusion, aluminium oxide is a good antibacterial agent against both gram positive and gram-negative organisms.


1997 ◽  
Vol 50 (8) ◽  
pp. 861 ◽  
Author(s):  
Shaheen Faizi ◽  
Bina Shaheen Siddiqui ◽  
Rubeena Saleem ◽  
Farzana Akhtar ◽  
Khursheed Ali Khan ◽  
...  

Quinolin-8-ol (1) on reaction with 2,6-dichloroaniline and m-nitrobenzaldehyde afforded 7-(α-hydroxy- m-nitrobenzyl)quinolin-8-ol (2), which is an unusual Mannich reaction product. The structure of (2) was determined by spectroscopic and single-crystal X-ray diffraction studies. Preliminary antimicrobial screening showed that (1) and (2) have activity against a large number of Gram-positive and Gram-negative bacteria.


2015 ◽  
Vol 32 ◽  
pp. 71-80
Author(s):  
Mohsen Mehregan ◽  
Hossein Soltaninejad ◽  
Behnaz Toluei Nia ◽  
Hadi Zare-Zardini ◽  
Masoud Zare-Shehneh ◽  
...  

The formation of biofilm (Biofouling) in different surface is the great concern in types of fields, especially in medical and health system as well as in membrane technology. The present study deals with the synthesis and characterization of Al2O3 nanopowders with antibacterial activity which can be a potentially utilized material for biocompatible implants. Nanostructure was synthesized based on sol-gel method and then, crystallite size, and microstructural and morphological characterization of nanostructure were determined by X-ray diffraction, electron-microscopic techniques - scanning electron microscopy (SEM) and transmission electron microscopy (TEM). According to X-ray diffraction, the value of particle size for Al2O3 nanopowders is 20.85 nm. In the following, the antibacterial activity of Al2O3 nanoparticles was assessed on three gram positive and three gram negative bacteria by radial diffusion assay and measurement of minimum inhibitory concentration (MIC). The toxicity of Al2O3 nanopowders on blood cells was also assessed. The results showed that this nanostructure has potent antibacterial activity against gram positive and gram negative bacteria. The synthesized Al2O3 nanopowders showed the antimicrobial activity against antibiotic resistant bacterium, Staphylococcus aureus. Significant antibacterial activity of this nanostructure was seen to have a greatest effect on Bacillus cereus with the MIC value of 9.2 μg/ml; while, among bacterial strains, Salmonellatyphimurium was investigated to be the most resistant one with the MIC of 35.6 μg/ml. Al2O3 nanopowders showed no toxicity on blood cells. according to acquired data in this study, Al2O3 nanopowders may be a good material for inhibition of biofilm formation.


2014 ◽  
Vol 8 (3) ◽  
pp. 40-45
Author(s):  
Zina Hashem Shehab ◽  
Huda Suhail Abid ◽  
Sumaya Fadhil Hamad ◽  
Sara Haitham

The study was conducted to evaluate the inhibitory activity of methanol extract of Gardenia jasminoides leaves compared with leaf crude extracts for some organic solvents namely Methanol, Ethanol, Petroleum ether, Asetone and Chloroform on growth of some pathogenic bacteria and yeast, which included four gram positive isolates Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes and Bacillus cereus and gram negative isolates Escherichia coli, Salmonella typhi, Proteus vulgaris and Pseudomonas aeruginosa and some yeasts Candida albicans and Saccharomyces boulardii, by using well diffusion method. The inhibitory activity of extracts in the tested bacterial strains and yeasts was varied according to the type of extracting solvents and are tested microorganisms. The methanol callus extract which grown on Murashige and Skoog (MS) media by using (Naphthalen acitic acid) NAA and (Benzyle adenine) BA as growth regulator highly effective as compared to the other extracts as for inhibition of three gram positive bacteria and three gram negative bacteria,which include Staphylococcus aureus and, Proteus vulgaris, followed by acetone and ethanolic extracts which include two gram positive bacteria and two gram negative bacteria. All extracts had highly effect in growth of Candida albicans while all crude extracts didn’t show any sensitivity against Saccharomyces boulardii, and when we’d done (High Performance Liquid Chromatography) HPLC test for detection of some active compound we found Quinic acid, Iridiods glycosides and Crocin which its rate in fresh callus was higher than fresh leaves.


2021 ◽  
Vol 21 (5) ◽  
pp. 2879-2891
Author(s):  
Enrico Podda ◽  
M. Carla Aragoni ◽  
Massimiliano Arca ◽  
Giulia Atzeni ◽  
Simon J. Coles ◽  
...  

The reactivity of thiomorpholinium P-(4-methoxyphenyl)-N-thiomorpholin-amidodithiophosphonate (S-MorH+2)(S-Mor-adtp−) and morpholinium P-(4-methoxyphenyl)-N-morpholin-amidodithiophosphonate (O-MorH+2)(O-Mor-adtp−) towards nickel (II) dichloride hexahydrated is presented and the hydrolysis of the relevant metal complexes investigated. The hydrolytic products (S-MorH+2)2 [Ni(dtp)2]2− and (O-MorH+2)2[Ni(dtp)2]2− were characterized by means of FT-IR, 1H, and 31P NMR and XRD and the experimented P–N cleavage investigated and elucidated by means of DFT calculations. The antimicrobial activity of the neutral nickel complex [Ni(S-Mor-adtp)2] was tested against a set of Gram-positive and Gram-negative bacteria alongside with its nanodispersion in a silica matrix. The complex [Ni(S-Mor-adtp)2] did not show antibacterial activity, whilst the nano-dispersed sample [Ni(S-Mor-adtp)2]_SiO2 demonstrated inhibition to growth of Staphylococcus aureus. The nanocomposites were fully characterized by means of XRPD, TGA, SEM and dinitrogen sorption techniques.


2012 ◽  
Vol 7 (5) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Alexis Peña ◽  
Luis Rojas ◽  
Rosa Aparicio ◽  
Libia Alarcón ◽  
José Gregorio Baptista ◽  
...  

The essential oil of the leaves of Espeletia nana Cuatrec, obtained by hydrodistillation, was analyzed by GC-MS, which allowed the identification of 24 components, which made up 99.9% of the oil. The most abundant compounds were α-pinene (38.1%), β-pinene (17.2%), myrcene (15.0%), spathulenol (4.2%), bicyclogermacrene (4.0%), α-zingiberene (4.0%), and γhimachalene (3.7%). Antibacterial activity was tested against Gram-positive and Gram-negative bacteria using the agar disk diffusion method. Activity was observed only against Gram-positive bacteria. MIC values were determined for Staphylococcus aureus ATCC 25923(200 μg/mL) and Enterococcus faecalis ATCC 29212 (600 μg/mL).


2010 ◽  
Vol 5 (1) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Ashraf El-Bassuony ◽  
Sameh AbouZid

A novel prenylated flavanoid, isonymphaeol-D (1), together with two known compounds, isonymphaeol-B (2) and nymphaeol-B (3), were isolated from Egyptian propolis. The structures of the isolated compounds were determined by various spectroscopic methods. 1 exhibited antibacterial activity against Gram-positive (Bacillus cereus, Staphylococcus aureus) and Gram-negative strains (Serratia sp., Pseudomonos sp., Escherichia coli).


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 213 ◽  
Author(s):  
V.A. Karetsi ◽  
C.N. Banti ◽  
N. Kourkoumelis ◽  
C. Papachristodoulou ◽  
C.D. Stalikas ◽  
...  

The [Zn3(CitH)2] (1) (CitH4= citric acid), was dispersed in sodium lauryl sulphate (SLS) to form the micelle of SLS@[Zn3(CitH)2] (2). This material 2 was incorporated in hydrogel made by hydroxyethyl-methacrylate (HEMA), an ingredient of contact lenses, toward the formation of pHEMA@(SLS@[Zn3(CitH)2]) (3). Samples of 1 and 2 were characterized by UV-Vis, 1H-NMR, FT-IR, FT-Raman, single crystal X-ray crystallography, X-ray fluorescence analysis, atomic absorption and TG/DTA/DSC. The antibacterial activity of 1–3 as well as of SLS against Gram-positive (Staphylococcus epidermidis (St. epidermidis) and Staphylococcus aureus (St. aureus)) and Gram-negative (Pseudomonas aeruginosa (PAO1), and Escherichia coli (E. coli)) bacteria was evaluated by the means of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and inhibitory zone (IZ). 2 showed 10 to 20-fold higher activity than 1 against the bacteria tested. Moreover the 3 decreases the abundance of Gram-positive microbes up to 30% (St. aureus) and up to 20% (PAO1) the Gram-negative ones. The noteworthy antimicrobial activity of the obtained composite 3 suggests an effective antimicrobial additive for infection-free contact lenses.


Sign in / Sign up

Export Citation Format

Share Document