MECHANICAL PROPERTIES OF A POLYURETHANE/MONTMORILLONITE NANOCOMPOSITE FEATURING ORGANOMODIFICATION SYNTHESIZED VIA IN SITU POLYMERIZATION

2015 ◽  
Vol 88 (1) ◽  
pp. 138-146 ◽  
Author(s):  
Rouhollah Bagheri ◽  
Reza Darvishi

ABSTRACT In this study, polyurethane (PU)/organomodified montmorillonite (cloisite®30B) is synthesized via in situ polymerization by reaction of an ether-based prepolymer with the isocyanate end groups and adiamine chain extender (4, 4-methylene-bis(2-chloroaniline)) in the presence of different amounts of nanoparticles dispersed in the prepolymer matrix by an ultrasonic mixer for 1 h. The synthesized polymers are cast on a pretreated carbon steel sheet and cured at 120 °C in an oven. The PU and its composites have been characterized by using Fourier transform infrared spectroscopy, X-ray diffraction (XRD), and mechanical testing. The XRD analysis of the cured samples containing 1 to 3 wt% cloisite30B showed intercalation segments in the silicate layers and exfoliation for 0.5 wt% nanoparticles. The highest mechanical properties were obtained using the cured exfoliated silicate layer sample. A twofold increase in the ultimate tensile strength and a 2.3 times increase in the adhesion strength were found for 0.5 wt% organoclay/PU as compared with that of pure PU. In addition, the exfoliated structure sample exhibited a 16% reduction in abrasion compared with that of pure PU.

2020 ◽  
Vol 855 ◽  
pp. 308-314
Author(s):  
Nadiya Miftachul Chusna ◽  
Sunaryono ◽  
Yunan Amza Muhammad ◽  
Rosabiela Irfa Andin ◽  
Ahmad Taufiq

The Fe2.75Mn0.25O4 nanoparticles were successfully synthesized by using the coprecipitation method, while the Fe2.75Mn0.25O4@PANI materials were successfully fabricated by using the in situ polymerization method. This research aimed to investigate the magnetic properties and nanostructure of the Fe2.75Mn0.25O4 nanoparticles and Fe2.75Mn0.25O4@PANI materials. Some characterizations of the samples were successfully carried out by using X-Ray Diffraction (XRD) instruments, Fourier Transform Infrared (FTIR), and Vibrating Sample Magnetometer (VSM) each of which was conducted to characterize the crystal structure, functional groups, morphology, and the magnetic properties of the materials. The XRD analysis results showed that the Fe2.75Mn0.25O4@PANI materials had a crystal size of 8.09 nm. Meanwhile, the FTIR spectrum represented vibrations due to the atomic bonds that made up the Fe2.75Mn0.25O4@PANI materials. Furthermore, the hysteresis curve from the VSM characterization results showed that the Fe2.75Mn0.25O4@PANI material saturation magnetization value was around 2.85 emus/g. From those characterization results, the Fe2.75Mn0.25O4@PANI materials are very potential to be applied as magnetic ink


2010 ◽  
Vol 663-665 ◽  
pp. 542-545 ◽  
Author(s):  
Bing Jie Zhu ◽  
Xin Wei Wang ◽  
Mei Fang Zhu ◽  
Qing Hong Zhang ◽  
Yao Gang Li ◽  
...  

The PANI/ITO conducting nanocomposites have been synthesized by in-situ polymerization. The obtained nanocomposites were characterized by X-ray diffraction pattern, scanning electron microscopy and Fourier transform infrared. Electrical conductivity measurements on the samples pressed into pellets showed that the maximum conductivity attained 2.0 ± 0.05 S/cm for PANI/ITO nanocomposites, at ITO doping concentration of 10 wt%. The results of the present work may provide a simple, rapid and efficient approach for preparing PANI/ITO nanocomposites.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1948 ◽  
Author(s):  
Yan Ma ◽  
Anxia Yang ◽  
Huiping Zhu ◽  
Arslan Muhammad ◽  
Pengwei Yang ◽  
...  

In this paper, the effects of Bi2O3 doping on the mechanical properties of PbO ceramic pellets were studied. Different ratios of Bi2O3/PbO (i.e., xBi2O3-(1−x) PbO, where x is 0, 1, 3, 5, or 7 wt.%) were fabricated and sintered at 570, 620, and 670 °C. Mechanical properties including density, hardness, flexural strength, and sintering of PbO were studied for each of the aforementioned compositions. Phase composition, microstructure, and the worn surfaces of the composites were characterized by scanning electron microscopy and X-ray diffraction (XRD). The XRD analysis revealed that a solid solution formed in the composite ceramic. The best suited conditions of temperature and doping of Bi2O3 for optimal sintering were found to be 620 °C and 3 wt.%, respectively. The hardness of the 3 wt.% Bi2O3-97 wt.% PbO ceramic was found to be 717 MPa, which is about four times higher than the hardness of pure PbO. In addition, the strength of the composites was found to be 43 MPa, which is two times higher than that of pure PbO. The integrity of the composites was verified using the lead–bismuth eutectic alloy flushing experiment. The results of this research paper are important for future studies of oxygen control in the lead–bismuth eutectic alloy of lead-cooled fast reactors.


2013 ◽  
Vol 457-458 ◽  
pp. 244-247
Author(s):  
Min Li ◽  
Li Guang Xiao ◽  
Hong Kai Zhao

Polyethylene/montmorillonite (PE/MMT) nanocomposites were prepared by in situ polymerization. The morphology of MMT/MgCl2/TiCl4 catalyst and PE/MMT nanocomposites was investigated by scanning electron microscopy (SEM). It can be seen that MMT/MgCl2/TiCl4 catalyst remained the original MMT sheet structures and many holes were found in MMT and the morphology of PE/MMT nanocomposites is part of the sheet in the form of existence, as most of the petal structure. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were carried out to characterize all the samples. XRD results reveal that the original basal reflection peak of PEI1 and PEI2 disappears completely and that of PEI3 become very weak. MMT/MgCl2/TiCl4 catalyst was finely dispersed in the PE matrix. Instead of being individually dispersed, most layers were found in thin stacks comprising several swollen layers.


2010 ◽  
Vol 113-116 ◽  
pp. 1712-1715
Author(s):  
Cheng Yu Wang ◽  
Chang Yu Liu ◽  
Jian Li

The preparation of hydrophobic CaCO3-wood composite through a double-diffusive method using dodecanoic acid as organic substrate is demonstrated. The product was characterized by the contact angle analysis, X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The mechanical properties of the product were measured. The results show that the synthesized CaCO3 fills in the wood cell and covers the surface of wood. The CaCO3-wood composite is hydrophobic. The mechanical properties of wood composite have significantly increased.


1999 ◽  
Vol 13 (09n10) ◽  
pp. 991-996
Author(s):  
M. Salvato ◽  
C. Attanasio ◽  
G. Carbone ◽  
T. Di Luccio ◽  
S. L. Prischepa ◽  
...  

High temperature superconducting multilayers have been obtained depositing Bi2Sr2CuO6+δ(2201) and ACuO2 layers, where A is Ca or Sr, by Molecular Beam Epitaxy (MBE) on MgO and SrTiO3 substrates. The samples, formed by a sequence of 2201/ACuO2 bilayers, have different thickness of ACuO2 layers while the thickness of the 2201 layers is kept constant. The surface structure of each layer has been monitored by in situ Reflection High Energy Electron Diffraction (RHEED) analysis which has confirmed a 2D nucleation growth. X-ray diffraction (XRD) analysis has been used to confirm that the layered structure has been obtained. Moreover, one-dimensional X-ray kinematic diffraction model has been developed to interpret the experimental data and to estimate the period of the multilayers. Resistive measurements have shown that the electrical properties of the samples strongly depend on the thickness of the ACuO2 layers.


2012 ◽  
Vol 557-559 ◽  
pp. 371-374
Author(s):  
Lian Liu ◽  
Teng Yu ◽  
Pei Wang ◽  
Guang Shuo Wang

Nanocomposites of poly(ε-caprolactone) (PCL) and layered double hydroxide (LDH) were prepared by in situ polymerization at low LDHs loadings in this work. The resultants were characterized by FTIR spectroscopy, X-ray diffraction (XRD), differential scanning calorimeter (DSC) and UV-visible spectroscopy (UV-vis). FTIR showed that the PCL/LDHs nanocomposites were prepared successfully by in situ polymerization and XRD spectra showed that the crystal structure did not change greatly in the presence of LDHS. DSC results confirmed that LDHs could act as nucleating agents. UV-vis spectra showed that LDHs had stronger absorbance peak than LDH. Moreover, the PCL/LDHs nanocomposites had strong anti-ultraviolet effect by introduction of LDHs into polymer matrix.


2011 ◽  
Vol 01 (03) ◽  
pp. 357-362 ◽  
Author(s):  
G. D. PRASANNA ◽  
H. S. JAYANNA

The polyaniline (PANI)/ CoFe2O4 nanocomposites were prepared by an In Situ polymerization of aniline in an aqueous solution. The composites were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrum,thermogravimetric analysis (TGA) and scanning electron micrograph (SEM). The AC conductivity and dielectric properties of these composites were investigated in the frequency range 1 kHz–10 MHz at room temperature. The AC conductivity was found to be constant up to 1 MHz and thereafter it increases steeply and it was observed maximum for the PANI with 60 wt% of CoFe2O4 nanocomposite. At lower frequencies the values of dielectric constant is maximum for pure CoFe2O4 nanoparticles.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Dandan Sun ◽  
Jiang Li ◽  
Qinghua Pan ◽  
Chaowei Hao ◽  
Guoqiao Lai

PA6/LiCl composites were synthesized by in situ anionic polymerization based on the interaction between the inorganic salts and PA6. Sodium hydroxide as initiator and N-acetylcaprolactam as activator were used in the preparation of PA6/LiCl composites with variety of LiCl content. X-ray diffraction (XRD) and differential scanning calorimeter (DSC) testing results showed that both of degree of crystallinity and melting temperature of the composites were decreased under the influence of LiCl. And theγcrystal phase proportion increased with increasing the LiCl content to appropriate amount.


2010 ◽  
Vol 163-167 ◽  
pp. 1951-1954
Author(s):  
Gui Xiang Hou ◽  
Hai Ning Na ◽  
Xiao Ming Sang

Graphite nanosheets prepared through high-temperature oxidation via powdering the expanded graphite. After soaking the expanded graphite with styrene(S) and maleic anhydride(MA) monomers, the polymer (Poly(S-co-MA))/expanded graphite(EG) (PSMA/EG) composite granules were obtained by in situ polymerization. Light microscope,scanning electron microscope and X-ray diffraction characterization were performed. SEM analysis indicate that the expanded graphite was mostly tore to sheets with thickness of 50–80 nm and with diameter of 1μm. Optical micrographs showed that the distribution of graphite platelets is found to be nearly uniform.


Sign in / Sign up

Export Citation Format

Share Document