Preparation and Characteristics of ZnO Thin Films Deposited on Glass Substrates

2001 ◽  
Vol 214-215 ◽  
pp. 193-198 ◽  
Author(s):  
Onwona Agyeman ◽  
Chao Nan Xu ◽  
Yun Liu ◽  
Morito Akiyama ◽  
Xu Guang Zheng ◽  
...  
2010 ◽  
Vol 97-101 ◽  
pp. 1768-1771 ◽  
Author(s):  
Dong Hun Kim ◽  
Riichi Murakami ◽  
Yun Hae Kim ◽  
Kyung Man Moon ◽  
Seung Jung An ◽  
...  

In order to study the characteristics of multilayer thin films with a ZnO/ metal/ ZnO structure the manufacture of the thin films was performed by a dc (direct current) magnetron sputtering system on slide glass substrates. The ZnO thin films were manufactured with the thicknesses of 30 nm and 50 nm. Three kinds of metals (Ag, Al and Cu) were deposited with the thicknesses of 4 nm, 8 nm, 12 nm and 16 nm. The electrical and optical properties of the manufactured thin films were then observed. As a result, the multilayer thin films with an Ag layer represented the most excellent electrical conductivity. This is due to the difference in the fundamental electrical properties of each of the metals. The structures of the metal particles deposited on the ZnO thin films were observed by an SEM (scanning electron microscope). The thin films exhibited a continuous structure with regular spaces between the metal particles. This resulted in an increase of transmittance. This is considered by the decrease of scattering and of light absorption on thin films with a continuous structure.


2018 ◽  
Vol 6 (3) ◽  
pp. 588-597 ◽  
Author(s):  
Dominic B. Potter ◽  
Michael J. Powell ◽  
Ivan P. Parkin ◽  
Claire J. Carmalt

Aluminium/gallium co-doped ZnO (AGZO), indium/gallium co-doped ZnO (IGZO), and aluminium/indium co-doped ZnO (AIZO) thin films were synthesised on glass substrates via aerosol assisted chemical vapour deposition (AACVD).


2019 ◽  
Vol 9 (21) ◽  
pp. 4509
Author(s):  
Weijia Yang ◽  
Fengming Wang ◽  
Zeyi Guan ◽  
Pengyu He ◽  
Zhihao Liu ◽  
...  

In this work, we reported a comparative study of ZnO thin films grown on quartz glass and sapphire (001) substrates through magnetron sputtering and high-temperature annealing. Firstly, the ZnO thin films were deposited on the quartz glass and sapphire (001) substrates in the same conditions by magnetron sputtering. Afterwards, the sputtered ZnO thin films underwent an annealing process at 600 °C for 1 h in an air atmosphere to improve the quality of the films. X-ray diffraction, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectra, photoluminescence spectra, and Raman spectra were used to investigate the structural, morphological, electrical, and optical properties of the both as-received ZnO thin films. The ZnO thin films grown on the quartz glass substrates possess a full width of half maximum value of 0.271° for the (002) plane, a surface root mean square value of 0.50 nm and O vacancies/defects of 4.40% in the total XPS O 1s peak. The comparative investigation reveals that the whole properties of the ZnO thin films grown on the quartz glass substrates are comparable to those grown on the sapphire (001) substrates. Consequently, ZnO thin films with high quality grown on the quartz glass substrates can be achieved by means of magnetron sputtering and high-temperature annealing at 600 °C.


2006 ◽  
Vol 496 (1) ◽  
pp. 112-116 ◽  
Author(s):  
A.N. Banerjee ◽  
C.K. Ghosh ◽  
K.K. Chattopadhyay ◽  
Hideki Minoura ◽  
Ajay K. Sarkar ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (66) ◽  
pp. 40467-40479
Author(s):  
R. Kara ◽  
L. Mentar ◽  
A. Azizi

Mg-doped ZnO (MZO) thin films were successfully fabricated on fluorine-doped tin-oxide (FTO)-coated glass substrates by an electrochemical deposition method using aqueous electrolytes of 80 mM Zn(NO3)2 with different concentrations of Mg(NO3)2.


Crystals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 169 ◽  
Author(s):  
A. El hat ◽  
I. Chaki ◽  
R. Essajai ◽  
A. Mzerd ◽  
G. Schmerber ◽  
...  

Structural, optical and electrical properties of (ytterbium/terbium) co-doped ZnO thin films deposited on glass substrates using the spray pyrolysis method were investigated. The films exhibited the hexagonal wurtzite structure with a preferential orientation along (002) direction. No secondary phase was observed in the X-ray diffraction detection limit. Atomic force microscopy (AFM) was performed and root means square roughness (RMS) of our samples decreased with terbium content. Photoluminescence measurements showed a luminescence band at 980 nm which is characteristic of Yb3+ transition between the electronic levels 2F5/2 to 2F7/2. This is experimental evidence for an efficient energy transfer from the ZnO matrix to Yb. Hall Effect measurements gave a low electrical resistivity value around 6.0 × 10−3 Ω.cm. Such characteristics make these films of interest to photovoltaic devices.


2015 ◽  
Vol 3 (44) ◽  
pp. 22311-22315 ◽  
Author(s):  
Shuqun Chen ◽  
Martyn McLachlan ◽  
Andrei Sapelkin ◽  
Russell Binions

Aerosol assisted chemical vapour deposition has been used to fabricate transparent conductive ZnO thin films with highly hexagonal, textured surfaces and ultra high haze on silica glass substrates.


2015 ◽  
Vol 773-774 ◽  
pp. 739-743
Author(s):  
A.N. Afaah ◽  
N.A.M. Asib ◽  
Aadila Aziz ◽  
Ruziana Mohamed ◽  
Kevin Alvin Eswar ◽  
...  

Mist-atomization deposition method was applied in order to grow ZnO nanoparticles on Au-seeded glass substrates acting as seeded template. Ag doped ZnO thin films were deposited on ZnO seeded templates by solution-immersion method. The influence of Ag doping content on the optical and Raman scattering properties of ZnO films were systematically investigated by UV-Vis transmittance measurement measured by ultra-violet visible spectroscopy (UV-Vis) and Raman scattering spectrum measured by Raman spectroscopy under room temperature. From UV-Vis transmittance measurement, the incorporation of Ag dopant to the ZnO makes the transmittance wavelength shifted to the shorter wavelength as compared to the pure ZnO. From Raman spectra, 4 cm-1 downshift is observed in Ag-doped thin films as compared to pure ZnO thin films. This Raman peak shift shows that a tensile stress existed in the Ag-doped ZnO film.


Sign in / Sign up

Export Citation Format

Share Document