The Impact of Tool Materials and Cutting Parameters on Surface Roughness in High-Speed Face-Milling

2004 ◽  
Vol 259-260 ◽  
pp. 462-465 ◽  
Author(s):  
Zhan Qiang Liu ◽  
Yi Wan ◽  
J.G. Liu
2014 ◽  
Vol 989-994 ◽  
pp. 3331-3334
Author(s):  
Tao Zhang ◽  
Guo He Li ◽  
L. Han

High speed milling is a newly developed advanced manufacturing technology. Surface integrity is an important object of machined parts. Surface roughness is mostly used to evaluate to the surface integrity. A theoretical surface roughness model for high face milling was established. The influence of cutting parameters on the surface roughness is analyzed. The surface roughness decreases when the cutter radius increases, total number of tooth and rotation angular speed, while it increases with the feeding velocity. The high speed face milling can get a smooth surface and it can replace the grinding with higher efficiency.


2015 ◽  
Vol 809-810 ◽  
pp. 87-92
Author(s):  
Irina Beşliu ◽  
Laurenţiu Slătineanu ◽  
Dumitru Amarandei

Hard milling is considered to be a precise and efficient machining method for the die and mold manufacturing industry. The main criterion for evaluating the cutting processes of the parts designed for these applications is the quality of the machined surfaces. For this reason, the analysis of the factors that influence the surface roughness obtained in this processes is important for helping the process become more productive and competitive. The present paper presents some results and an empirical model for surface roughness when high speeds face milling of AISI W1 tool steel. The influence of cutting parameters and material hardness is investigated by using Taguchi design of experiments. The results obtained show that high speed face milling of hardened tool steel AISI W1 can be carried out in economical conditions(on plant milling machines) and can lead to satisfactory surface quality (Ra =0.2-0.36 μm).


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1526
Author(s):  
Cheng-Hsien Kuo ◽  
Zi-Yi Lin

Most aerospace parts are thin walled and made of aluminum or titanium alloy that is machined to the required shape and dimensions. Deformation is a common issue. Although the reduced cutting forces used in high-speed milling generate low residual stress, the problem of deformation cannot be completely resolved. In this work, we emphasized that choosing the correct cutting parameters and machining techniques could increase the cutting performance and surface quality and reduce the deformation of thin plates. In this study, a part made of a thin 6061 aluminum alloy plate was machined by high-speed milling (HSM), and a Taguchi L16 orthogonal array was used to optimize the following parameters: linear velocity, feed per tooth, cutting depth, cutting width, and toolpath. The impact of cutting parameters on the degree of deformation, surface roughness, as well as the cutting force on the thin plate were all investigated. The results showed that the experimental parameters for the optimal degree of deformation were A1 (linear velocity 450 mm/min), B1 (feed per tooth 0.06 mm/tooth), C1 (cutting depth 0.3 mm), D4 (cutting width 70%), and E4 (rough zigzag). Feed per tooth was the most significant control factor, with a contribution as high as 63.5%. It should also be mentioned that, according to the factor response of deformation, there was a lower value of feed per tooth and less deformation. Furthermore, the feed per tooth and the cutting depth decreased and the surface roughness increased. The cutting force rose or fell with an increase or decrease of cutting depth.


2011 ◽  
Vol 120 ◽  
pp. 296-303
Author(s):  
Xing Quan Shen ◽  
Yao Ming Li ◽  
Hai Jiao Zhang

Single-edge rigid reaming process has high-speed cutting rigid hinge processing, auto-oriented, low surface roughness of a series of advantages. In this paper, by using of the elastic and plastic theory, we studied the effect of the force acting on the guide block extrusion on the hole wall, proposed the two different cutting states of single-edge rigid reaming processing, and analyzed the conditions of the reaming processing in the extrusion state. By the analysis of experiments, we obtained that in order to achieve the good hole processing surface quality we must make the reaming processing in the extrusion processing state, and we determined the impact of the cutting parameters on the cutting force and surface roughness.


2016 ◽  
Vol 78 (6-9) ◽  
Author(s):  
Mohd Shahfizal Ruslan ◽  
Kamal Othman ◽  
Jaharah A.Ghani ◽  
Mohd Shahir Kassim ◽  
Che Hassan Che Haron

Magnesium alloy is a material with a high strength to weight ratio and is suitable for various applications such as in automotive, aerospace, electronics, industrial, biomedical and sports. Most end products require a mirror-like finish, therefore, this paper will present how a mirror-like finishing can be achieved using a high speed face milling that is equivalent to the manual polishing process. The high speed cutting regime for magnesium alloy was studied at the range of 900-1400 m/min, and the feed rate for finishing at 0.03-0.09 mm/tooth. The surface roughness found for this range of cutting parameters were between 0.061-0.133 µm, which is less than the 0.5µm that can be obtained by manual polishing. Furthermore, from the S/N ratio plots, the optimum cutting condition for the surface roughness can be achieved at a cutting speed of 1100 m/min, feed rate 0.03 mm/tooth, axial depth of cut of 0.20 mm and radial depth of cut of 10 mm. From the experimental result the lowest surface roughness of 0.061µm was obtained at 900 m/min with the same conditions for other cutting parameters. This study revealed that by milling AZ91D at a high speed cutting, it is possible to eliminate the polishing process to achieve a mirror-like finishing.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shao-Hsien Chen ◽  
Chung-An Yu

In recent years, most of nickel-based materials have been used in aircraft engines. Nickel-based materials applied in the aerospace industry are used in a wide range of applications because of their strength and rigidity at high temperature. However, the high temperatures and high strength caused by the nickel-based materials during cutting also reduce the tool lifetime. This research aims to investigate the tool wear and the surface roughness of Waspaloy during cutting with various cutting speeds, feed per tooth, cutting depth, and other cutting parameters. Then, it derives the formula for the tool lifetime based on the experimental results and explores the impacts of these cutting parameters on the cutting of Waspaloy. Since the impacts of cutting speed on the cutting of Waspaloy are most significant in accordance with the experimental results, the high-speed cutting is not recommended. In addition, the actual surface roughness of Waspaloy is worse than the theoretical surface roughness in case of more tool wear. Finally, a set of mathematical models can be established based on these results, in order to predict the surface roughness of Waspaloy cut with a worn tool. The errors between the predictive values and the actual values are 5.122%∼8.646%. If the surface roughness is within the tolerance, the model can be used to predict the residual tool lifetime before the tool is damaged completely. The errors between the predictive values and the actual values are 8.014%∼20.479%.


Author(s):  
Derek M. Yip-Hoi ◽  
David D. Gill

Light weight honeycomb structures lend themselves to important applications in aerospace. These range from aerodynamic and structural components such as wing edges, flaps, rotor blades and engine cowlings, to aircraft interior structures such as overhead luggage bins, compartment liners, bulkheads and the monument structures found in galleys and lavatory areas. Often the honeycomb is formed into a composite ply sandwich with fiberglass face sheets bonded to the honeycomb core. These panels are cut to shape using CNC routers and specially designed cutting tools. However, the quality of the cuts generated even with these special tools leaves much to be desired. The low stiffness of the structure leads to imperfections such as fraying of the cut face sheet edges and the generation of flags along the cut honeycomb edge. These impact the ease of assembly and often require manually intensive reworking to mitigate. The cutting of honeycomb structures and sandwich panels is challenging due to low stiffness, anisotropic mechanical properties and a high proportion of interrupted cutting due to the air voids that are present. The cutting mechanics are not well understood at this time. This paper presents findings from the study of cutting of honeycomb sandwich panels using high speed videography and correlates these with results of geometric modeling of the engagement between the cutter and workpiece. The study includes the impact of the trajectory of the tool path through the cell structures on the generation of flagging. It also reports on the effects of two different cutting tool geometries and the introduction of a lead angle on the size and structure of the flags generated. These findings present the case for a research regime similar to the one completed for solid metals, into modeling the mechanics behind machining honeycomb structures. This will help manufacturers using these materials to make better choices in the tools, cutting parameters and machining strategies that they employ in their process planning.


Sign in / Sign up

Export Citation Format

Share Document