Experimental Investigations of Thermal Damage for Rocks

2006 ◽  
Vol 324-325 ◽  
pp. 1213-1216 ◽  
Author(s):  
Dao Ying Xi ◽  
Song Lin Xu ◽  
Yue Zhan Tao ◽  
Ting Li

As the rocks were composed of many minerals, high temperature might lead to the non-consistent deformation among these components. That was the mechanism of thermal damage. In the present paper, the thermal damage of rocks was investigated under a much broader temperature range until minerals phase transition. The experimental techniques of AE and the internal friction were proven to be the most useful tools to reveal the thermal damage. The affection of thermal damage to Kaiser Effect of temperature and the coupled effects of thermal and mechanical damage were also discussed.

Author(s):  
H. B. Gasimov ◽  
R. M. Rzayev

Cu2Te single crystal was grown by the Bridgman method. X-ray diffraction (XRD) study of Cu2Te single crystals in the temperature range of 293–893 K was performed and possible phase transitions in the mentioned range of temperature have been investigated. (Cu2Te)[Formula: see text](ZnTe)[Formula: see text] single crystals also were grown with [Formula: see text], 0.05, 0.10 concentrations and structural properties of the obtained single crystals were investigated by the XRD method in the temperature range 293–893 K. Lattice parameters and possible phase transitions in the mention temperature range were determined for (Cu2Te)[Formula: see text](ZnTe)[Formula: see text] single crystals for [Formula: see text], 0.05, 0.10 concentrations.


2009 ◽  
Vol 65 (6) ◽  
pp. 770-781 ◽  
Author(s):  
Tatiana N. Drebushchak ◽  
Yury A. Chesalov ◽  
Elena V. Boldyreva

Structural changes in the high-temperature ∊-polymorph of chlorpropamide, 4-chloro-N-(propylaminocarbonyl)benzenesulfonamide, C10H13ClN2O3S, on cooling down to 100 K and on reverse heating were followed by single-crystal X-ray diffraction. At temperatures below 200 K the phase transition into a new polymorph (termed the ∊′-form) has been observed for the first time. The polymorphic transition preserves the space group Pna21, is reversible and is accompanied by discontinuous changes in the cell volume and parameters, resulting from changes in molecular conformation. As shown by IR spectroscopy and X-ray powder diffraction, the phase transition in a powder sample is inhomogeneous throughout the bulk, and the two phases co-exist in a wide temperature range. The cell parameters and the molecular conformation in the new polymorph are close to those in the previously known α-polymorph, but the packing of the z-shaped molecular ribbons linked by hydrogen bonds inherits that of the ∊-form and is different from the packing in the α-polymorph. A structural study of the α-polymorph in the same temperature range has revealed no phase transitions.


2015 ◽  
Vol 71 (8) ◽  
pp. 695-700 ◽  
Author(s):  
Ilia A. Guzei ◽  
Charmaine Arderne

Three polymorphs of bis(nitrito-κN)[tris(2-aminoethyl)amine-κ4N,N′,N′′,N′′′]cobalt(III) chloride, [Co(NO2)2(C6H18N4)]Cl, have been structurally characterized in the 100–300 K temperature range. Two orthorhombic polymorphs are related by a solid-state enantiotropic order–disorder k2 phase transition atca152 K. The third, monoclinic, polymorph crystallizes as a nonmerohedral twin. In the structure of the high-temperature (300 K) orthorhombic polymorph, the CoIIIcomplex cation resides on a crystallographic mirror plane, whereas the Cl−anion occupies a crystallographic twofold axis. In the unit cell of the monoclinic polymorph, the cationic CoIIIcomplex is in a general position, whose charge is balanced by two halves of two Cl−anions, each residing on a crystallographic twofold axis.


1978 ◽  
Vol 21 (85) ◽  
pp. 375-384 ◽  
Author(s):  
René Vassoille ◽  
Christian Maï ◽  
Joseph Perez

Abstract The inelastic behaviour of ice Ih single crystals has been investigated by an inverted torsional pendulum in the low-frequency range. Three features are distinguished: (i) a relaxation peak previously observed by several authors in the higher-frequency range, (ii) an internal friction increasing with temperature in the high-temperature range (230–273 K), (iii) within this high-temperature range, internal friction becomes amplitude dependent, and this dependence becomes greater the greater the temperature. In this case, the internal friction has been interpreted in terms of movements of dislocations. Hence, the experimental results are interpreted with a model of internal friction based on an empirical relation for the velocity of dislocations. This model of internal friction is in fair agreement with experimental data . It is possible then to get an estimate of dislocation density. Hence it is shown that internal friction experiments can be useful in the study of the plastic behaviour of ice single crystals.


2018 ◽  
Vol 750 ◽  
pp. 669-676 ◽  
Author(s):  
Meng Sun ◽  
Xianping Wang ◽  
Le Wang ◽  
Hui Wang ◽  
Weibin Jiang ◽  
...  

1978 ◽  
Vol 21 (85) ◽  
pp. 375-384
Author(s):  
René Vassoille ◽  
Christian Maï ◽  
Joseph Perez

AbstractThe inelastic behaviour of ice Ih single crystals has been investigated by an inverted torsional pendulum in the low-frequency range. Three features are distinguished:(i) a relaxation peak previously observed by several authors in the higher-frequency range,(ii) an internal friction increasing with temperature in the high-temperature range (230–273 K),(iii) within this high-temperature range, internal friction becomes amplitude dependent, and this dependence becomes greater the greater the temperature.In this case, the internal friction has been interpreted in terms of movements of dislocations. Hence, the experimental results are interpreted with a model of internal friction based on an empirical relation for the velocity of dislocations. This model of internal friction is in fair agreement with experimental data . It is possible then to get an estimate of dislocation density. Hence it is shown that internal friction experiments can be useful in the study of the plastic behaviour of ice single crystals.


Author(s):  
N. Rozhanski ◽  
A. Barg

Amorphous Ni-Nb alloys are of potential interest as diffusion barriers for high temperature metallization for VLSI. In the present work amorphous Ni-Nb films were sputter deposited on Si(100) and their interaction with a substrate was studied in the temperature range (200-700)°C. The crystallization of films was observed on the plan-view specimens heated in-situ in Philips-400ST microscope. Cross-sectional objects were prepared to study the structure of interfaces.The crystallization temperature of Ni5 0 Ni5 0 and Ni8 0 Nb2 0 films was found to be equal to 675°C and 525°C correspondingly. The crystallization of Ni5 0 Ni5 0 films is followed by the formation of Ni6Nb7 and Ni3Nb nucleus. Ni8 0Nb2 0 films crystallise with the formation of Ni and Ni3Nb crystals. No interaction of both films with Si substrate was observed on plan-view specimens up to 700°C, that is due to the barrier action of the native SiO2 layer.


Alloy Digest ◽  
1967 ◽  
Vol 16 (10) ◽  

Abstract NICKELVAC L-605 is a double vacuum melted, cobalt-base alloy for high temperature applications. It is recommended for highly stressed parts operating in the temperature range of 1700 to 2000 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Co-53. Producer or source: Allvac Metals Company, A Teledyne Company.


Sign in / Sign up

Export Citation Format

Share Document