Measurement of Mechanical Properties and Residual Stresses of Bridged Gold Films and Circular Gold Membranes

2006 ◽  
Vol 326-328 ◽  
pp. 227-232 ◽  
Author(s):  
Woo Sung Choi ◽  
S.T. Choi ◽  
Sang Uk Son ◽  
Seung Seob Lee ◽  
S.Y. Yang ◽  
...  

In order to measure the mechanical properties of gold films on silicon substrate, two types of specimens, i.e., bridged films and circular membranes, are manufactured. Using a wedge tip, the bridged gold films are indented so that the films are pushed off, which is called as V-peel test. The load-deflection curves obtained by the V-peel test are analyzed with the concept of geometrically nonlinear beam by using the minimum potential energy theory together with Ritz method. Thus, Young’s modulus and residual stress of the bridged gold films are obtained. Blister test is also conducted to measure the Young’s modulus and residual stress of a circular gold membrane, of which deformation is measured by Twyman-Green interferometer. By gradually increasing the external pressure applied on the membrane, the interfacial fracture toughness between the gold membrane and silicon substrate is measured based on the concepts of interfacial fracture mechanics.

Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1072
Author(s):  
Sergio Sapienza ◽  
Matteo Ferri ◽  
Luca Belsito ◽  
Diego Marini ◽  
Marcin Zielinski ◽  
...  

3C-SiC is an emerging material for MEMS systems thanks to its outstanding mechanical properties (high Young’s modulus and low density) that allow the device to be operated for a given geometry at higher frequency. The mechanical properties of this material depend strongly on the material quality, the defect density, and the stress. For this reason, the use of SiC in Si-based microelectromechanical system (MEMS) fabrication techniques has been very limited. In this work, the complete characterization of Young’s modulus and residual stress of monocrystalline 3C-SiC layers with different doping types grown on <100> and <111> oriented silicon substrates is reported, using a combination of resonance frequency of double clamped beams and strain gauge. In this way, both the residual stress and the residual strain can be measured independently, and Young’s modulus can be obtained by Hooke’s law. From these measurements, it has been observed that Young’s modulus depends on the thickness of the layer, the orientation, the doping, and the stress. Very good values of Young’s modulus were obtained in this work, even for very thin layers (thinner than 1 mm), and this can give the opportunity to realize very sensitive strain sensors.


2014 ◽  
Vol 875-877 ◽  
pp. 1642-1646
Author(s):  
Jing Zhang

Alumina and zirconia are important materials for energy and optical applications. In this study, the effect of thermal cycling on grain size and residual stress was reported. Residual stress was measured using X-ray diffraction (XRD) sin2ψ method for the as-received and the samples after thermal cycling up to 900 cycles. For alumina, the measured residual stress is approximately 96 MPa in tensile for the as-received material, and increases to its highest value of 480 MPa after 650 thermal cycles. The residual stress decreases from 480 MPa to 96 MPa in tensile with increased thermal cycling from 650 to 900 cycles. The crystallized grain size calculated from the diffraction pattern shows that the mean crystallized grain size is about 93 nm for the as-received and increases to 232 nm after 650 thermal cycles. This result is consistent with the enlarged grain size observed by scanning electron microscopy for the alumina after 650 thermal cycles reported earlier. With continued thermal cycling up to 900 cycles, the crystallized grain size is greatly reduced to 104 nm. It suggests that evolution of the crystallized grain size is correlated with the residual stress. For yttria-stabilized tetragonal zirconia (Y-TZP), the mechanical properties at room temperature, are consistent with the property values provided by the manufacturer. The Young’s modulus of shows a non-linear inverse relationship with increasing temperature. The degradation of the Young’s modulus mostly occurs prior to 400 °C and to a less extent in the temperature range of 400 °C up to 850 °C. The Vickers hardness number for the as-received Y-TZP material decreases to a very small extent after 560 thermal cycles and increases approximately 2%, after 1200 thermal cycles. This is consistent with the trend of the Young’s modulus for thermal-cycled specimens.


Micromachines ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 801 ◽  
Author(s):  
Jaweb Ben Messaoud ◽  
Jean-François Michaud ◽  
Dominique Certon ◽  
Massimo Camarda ◽  
Nicolò Piluso ◽  
...  

The stress state is a crucial parameter for the design of innovative microelectromechanical systems based on silicon carbide (SiC) material. Hence, mechanical properties of such structures highly depend on the fabrication process. Despite significant progresses in thin-film growth and fabrication process, monitoring the strain of the suspended SiC thin-films is still challenging. However, 3C-SiC membranes on silicon (Si) substrates have been demonstrated, but due to the low quality of the SiC/Si heteroepitaxy, high levels of residual strains were always observed. In order to achieve promising self-standing films with low residual stress, an alternative micromachining technique based on electrochemical etching of high quality homoepitaxy 4H-SiC layers was evaluated. This work is dedicated to the determination of their mechanical properties and more specifically, to the characterization of a 4H-SiC freestanding film with a circular shape. An inverse problem method was implemented, where experimental results obtained from bulge test are fitted with theoretical static load-deflection curves of the stressed membrane. To assess data validity, the dynamic behavior of the membrane was also investigated: Experimentally, by means of laser Doppler vibrometry (LDV) and theoretically, by means of finite element computations. The two methods provided very similar results since one obtained a Young’s modulus of 410 GPa and a residual stress value of 41 MPa from bulge test against 400 GPa and 30 MPa for the LDV analysis. The determined Young’s modulus is in good agreement with literature values. Moreover, residual stress values demonstrate that the fabrication of low-stressed SiC films is achievable thanks to the micromachining process developed.


2003 ◽  
Vol 795 ◽  
Author(s):  
Wang-Shen Su ◽  
Weileun Fang ◽  
Ming-Shih Tsai

ABSTRACTThis study reported a novel method for tuning thin film mechanical properties by means of plasma surface modification. In order to demonstrate the feasibility of this approach, various plasma treatments, including O2, H2, NH3 atmospheres, were implemented to tune the Young's modulus and residual stress of SiO2 film. Without plasma treatment, the static tip deflection of 200μm long SiO2 cantilever was 9.01μm. After treatment with H2, O2, and NH3 plasma, the tip deformation of the treated cantilevers became 10.22μm, 8.28μm, and -6.84μm respectively. The Young's modulus of the SiO2 cantilever without plasma treatment was 76.3GPa. After treated with H2, O2, NH3 plasma, the Young's modului of those treated cantilevers became 70.8 GPa, 74.7 GPa, and 71.4 GPa, respectively. Hence, after H2 and NH3 plasma treatment, the equivalent elastic modulus of SiO2 cantilever could be reduced about 7%.


1997 ◽  
Vol 505 ◽  
Author(s):  
A. Karimi ◽  
O. R. Shojaei ◽  
J. L. Martin

ABSTRACTMechanical properties of titanium nitride (TiNx) thin films have been investigated using the bulge test and the depth sensing nanoindentation measurements. The bulge test was performed on the square free standing membranes made by means of standard micromachining of silicon wafers, while the nanoindentation was conducted on the films adhered to their supporting substrate. Thin layeres of titanium nitride (t = 300 – 1000 nm) were deposited in a r. f. magnetron sputtering system on the Si(100) wafers containing a layer of low stress LPCVD silicon nitride (SiNy). The bulge test was first conducted on the silicon nitride film to determine its proper residual stress and Young's modulus. Then, the composite membrane made of TiNx together with underlying silicon nitride was bulged and the related load-displacement variation was measured. Finally, using a simple rule of mixture formula the elastic mechanical properties of TiNx coatings were calculated. Both the Young's modulus and residual stress showed increasing values with negative bias voltage and nitrogen to titanium ratio, but the substrate temperature between 50–570°C was found less significant as compared to the other parameters. Nanoindentation data extracted from dynamically loading-unloading of TiN films converged to the bulge test measurements for compact coatings, but diverged from the bulge test data for porous coatings. Scanning electron microscopy observation of the cross sectioned specimens showed that TiN films first grow by formation of the nanocrystallites of size mostly between 10 – 15 nm. These nanocrystallites give rise to the columnar morphology beyond a thickness of 50–100 nm. The columns change their aspect with deposition parameters, but remain nearly perpendicular to the film surface. Relationship between microstructural evolution of columns and mechanical properties of coatings are discussed in terms of deposition parameters.


2007 ◽  
Vol 329 ◽  
pp. 545-550 ◽  
Author(s):  
Dao Hui Xiang ◽  
Ming Chen ◽  
Y.P. Ma ◽  
Fang Hong Sun

Despite great advancements in diamond thin film growth and deposition techniques, determination of the residual stress and Young’s modulus for diamond films has continued to be a challenge. The bulge test is a potentially powerful tool for characterizing the mechanical properties of diamond film. In a bulge tester, pressure is applied on a thin membrane and the out-of-plane deflection of the membrane center is measured. The Young’s Modulus and the residual stress are simultaneously determined by using the load-deflection behavior of a membrane. By means of electron-enhanced hot filament chemical vapor deposition (HFCVD), a diamond film was deposited on silicon slice (100), and the free-standing window sample of diamond thin films was fabricated by means of photolithography and anisotropic wet etching. The deflection of the membranes is measured using a laser interferometry system. The elastic modulus and residual stress were measured using a self-designed bulge equipment. In addition, the distortion of diamond thin films under different pressure was simulated using finite element analysis and the contrast was made with experimental data. The research indicated that the Young’s Modulus of diamond thin films is 937.8GPa and the residual stress is -10.53MPa. The elastic modulus and the residual stress coincide with the report in the literature and the value tested by X-ray diffraction, respectively. This method uses a simple apparatus, and the fabrication of samples is very easy, and it has provided an effective means for precise measure the mechanical properties of other thin films.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Salloom ◽  
S. A. Mantri ◽  
R. Banerjee ◽  
S. G. Srinivasan

AbstractFor decades the poor mechanical properties of Ti alloys were attributed to the intrinsic brittleness of the hexagonal ω-phase that has fewer than 5-independent slip systems. We contradict this conventional wisdom by coupling first-principles and cluster expansion calculations with experiments. We show that the elastic properties of the ω-phase can be systematically varied as a function of its composition to enhance both the ductility and strength of the Ti-alloy. Studies with five prototypical β-stabilizer solutes (Nb, Ta, V, Mo, and W) show that increasing β-stabilizer concentration destabilizes the ω-phase, in agreement with experiments. The Young’s modulus of ω-phase also decreased at larger concentration of β-stabilizers. Within the region of ω-phase stability, addition of Nb, Ta, and V (Group-V elements) decreased Young’s modulus more steeply compared to Mo and W (Group-VI elements) additions. The higher values of Young’s modulus of Ti–W and Ti–Mo binaries is related to the stronger stabilization of ω-phase due to the higher number of valence electrons. Density of states (DOS) calculations also revealed a stronger covalent bonding in the ω-phase compared to a metallic bonding in β-phase, and indicate that alloying is a promising route to enhance the ω-phase’s ductility. Overall, the mechanical properties of ω-phase predicted by our calculations agree well with the available experiments. Importantly, our study reveals that ω precipitates are not intrinsically embrittling and detrimental, and that we can create Ti-alloys with both good ductility and strength by tailoring ω precipitates' composition instead of completely eliminating them.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3467
Author(s):  
Anna Nocivin ◽  
Doina Raducanu ◽  
Bogdan Vasile ◽  
Corneliu Trisca-Rusu ◽  
Elisabeta Mirela Cojocaru ◽  
...  

The present paper analyzed the microstructural characteristics and the mechanical properties of a Ti–Nb–Zr–Fe–O alloy of β-Ti type obtained by combining severe plastic deformation (SPD), for which the total reduction was of etot = 90%, with two variants of super-transus solution treatment (ST). The objective was to obtain a low Young’s modulus with sufficient high strength in purpose to use the alloy as a biomaterial for orthopedic implants. The microstructure analysis was conducted through X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) investigations. The analyzed mechanical properties reveal promising values for yield strength (YS) and ultimate tensile strength (UTS) of about 770 and 1100 MPa, respectively, with a low value of Young’s modulus of about 48–49 GPa. The conclusion is that satisfactory mechanical properties for this type of alloy can be obtained if considering a proper combination of SPD + ST parameters and a suitable content of β-stabilizing alloying elements, especially the Zr/Nb ratio.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 461
Author(s):  
Konrad Kosiba ◽  
Konda Gokuldoss Prashanth ◽  
Sergio Scudino

The phase and microstructure formation as well as mechanical properties of the rapidly solidified Mg67Ag33 (at. %) alloy were investigated. Owing to kinetic constraints effective during rapid cooling, the formation of equilibrium phases is suppressed. Instead, the microstructure is mainly composed of oversaturated hexagonal closest packed Mg-based dendrites surrounded by a mixture of phases, as probed by X-ray diffraction, electron microscopy and energy dispersive X-ray spectroscopy. A possible non-equilibrium phase diagram is suggested. Mainly because of the fine-grained dendritic and interdendritic microstructure, the material shows appreciable mechanical properties, such as a compressive yield strength and Young’s modulus of 245 ± 5 MPa and 63 ± 2 GPa, respectively. Due to this low Young’s modulus, the Mg67Ag33 alloy has potential for usage as biomaterial and challenges ahead, such as biomechanical compatibility, biodegradability and antibacterial properties are outlined.


Sign in / Sign up

Export Citation Format

Share Document