Characterization of Crystalline Hydroxyapatite Thin Coatings for Biomedical Applications

2007 ◽  
Vol 330-332 ◽  
pp. 525-528 ◽  
Author(s):  
Zhen Hong ◽  
Alexandre Mello ◽  
L. Luan ◽  
Marcos Farina ◽  
L.R. Andrade ◽  
...  

Crystalline hydroxyapatite thin coatings have been prepared using a novel opposing RF magnetron sputtering approach at room temperature. X-ray diffraction (XRD) analysis shows that all the principal peaks are attributable to HA, and the as-deposited HA coatings are made up of crystallites in the size range of 50-100nm. Fourier transform infrared spectroscopy (FTIR) studies reveal the existence of phosphate, carbonate and hydroxyl groups, suggesting that HA coatings are carbonated. Finally, in vitro cell culture experiments have demonstrated that murine osteoblast cells attach and grow well on the as-sputtered coatings. These results encourage further studies of hydroxyapatite thin coatings prepared by the opposing RF magnetron sputtering approach as a promising candidate for next-generation bioimplant materials.

2007 ◽  
Vol 361-363 ◽  
pp. 215-218 ◽  
Author(s):  
Zhen Hong ◽  
Alexandre Mello ◽  
Tomohiko Yoshida ◽  
Lan Luan ◽  
Paula H. Stern ◽  
...  

Crystalline hydroxyapatite thin coatings have been prepared using a novel opposing RF magnetron sputtering approach at room temperature. X-ray diffraction (XRD) analysis shows that all the principal peaks are attributable to HA, and the as-deposited HA coatings are made up of crystallites in the size range of 50-100nm. Fourier transform infrared spectroscopy (FTIR) studies reveal the existence of phosphate, carbonate and hydroxyl groups, suggesting that HA coatings are highly crystalline. To study the biocompatibility of these coatings, murine osteoblast cells were seeded onto various substrates. Cell density counts using fluorescence microscopy show that the best osteoblast proliferation is achieved on an HA RAMS-coated titanium substrate. These experiments demonstrate that RAMS is a promising coating technique for biomedical applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Toshihiro Inami ◽  
Yasuhiro Tanimoto ◽  
Masayuki Ueda ◽  
Yo Shibata ◽  
Satoshi Hirayama ◽  
...  

This work describes the fabrication, optimization, and characterization of electrospun fibrous poly(D,L-lactic acid) (PDLLA) for biomedical applications. The influences of the polymer concentration of the electrospinning solution (5, 10, or 15 wt%) and the solution flow rate (0.1, 0.5, 1.0, or 2.0 mL/h) on the morphology of the obtained fibrous PDLLA were evaluated. Thein vitrobiocompatibility of two types of PDLLA, ester terminated PDLLA (PDLLA-R) and carboxyl terminated PDLLA (PDLLA-COOH), was evaluated by monitoring apatite formation on samples immersed in Hanks’ balanced salt (HBS) solution. 15 wt% polymer solution was the most beneficial for preparing a fibrous PDLLA structure. Meanwhile, no differences in morphology were observed for PDLLA prepared at various flow rates. Apatite precipitate is formed on both types of PDLLA only 1 day after immersion in HBS solution. After 7 days of immersion, PDLLA-COOH showed greater apatite formation ability compared with that of PDLLA-R, as measured by thin-film X-ray diffraction. The results indicated that the carboxyl group is effective for apatite precipitation in the body environment.


2013 ◽  
Vol 873 ◽  
pp. 426-430
Author(s):  
Xian Wu Xiu ◽  
Li Xu ◽  
Cheng Qiang Zhang

Molybdenum-doped zinc oxide (MZO) films have been prepared by RF magnetron sputtering on glass substrates at room temperature. The structural, electrical and optical properties of the films vary with sputtering power from 15 W to 70 W are investigated. X-ray diffraction (XRD) analysis reveals that all the films are polycrystalline with the hexagonal structure and have a preferred orientation along thecaxis perpendicular to the substrate. The resistivity increases with the increase of the RF power. The lowest resistivity achieved is 5.4×10-3Ω cm at a RF power of 15 W with a Hall mobility of 11 cm2V-1s-1and a carrier concentration of 1.1×1019cm-3. The average transmittance drops from 85% to 81% in the visible range and the optical band gap decreases from 3.26 eV to 3.19 eV with the increase of the RF power.


2008 ◽  
Vol 396-398 ◽  
pp. 369-372 ◽  
Author(s):  
Alexandre Mello ◽  
Elena Mavropoulos ◽  
Zhen Hong ◽  
J.B. Ketterson ◽  
Antonella M. Rossi

Hydroxyapatite (HAP) crystalline thin-coatings have been grown using a right angle RF magnetron sputtering approach at room temperature. The surface structural information of these biocompatible coatings at nanometer scales was obtained by glancing-incidence X-ray diffraction (GIXRD) with synchrotron radiation. The GIXRD spectra were obtained by fixed incidence theta angles at 0.5 and 1 degree. Structural profile analyses were performed over these nano-coating layers with reduced substrate interference. The coating thickness was calibrated by specular X-ray reflectivity (XRR) curves. Experiments have been performed on thin-coatings of HAP sputtered on silicon wafers and acid etched titanium discs at room temperature. GIXRD analysis has shown that all the principal peaks are attributed to a crystalline HAP. Previous tests of biocompatibility with osteoblasts cells have been encouraging studies on the surface of hydroxyapatite thin coatings prepared by opposing RF magnetron sputtering approach, as a promising candidate for bioimplant materials.


2013 ◽  
Vol 832 ◽  
pp. 596-601 ◽  
Author(s):  
N.A.M. Asib ◽  
Aadila Aziz ◽  
A.N. Afaah ◽  
Mohamad Rusop ◽  
Zuraida Khusaimi

Needle-like zinc oxide (ZnO) nanostructures was deposited on titanium dioxide (TiO2) nanoparticles by solution-immersion method and Radio Frequency (RF) magnetron sputtering with diffferent RF powers, respectively on a glass substrate to synthesis nanocomposites of ZnO/TiO2. Field Emission Scanning Electrons Microscope (FESEM) images demonstrate that needle-like ZnO (112-1110 nm) are deposited on the surface of the TiO2nanoparticles with the diameter of approximately 36.3-62.9 nm. At 200 W, more needle-like ZnO with smallest average diameter (112 nm) appeared on the TiO2nanoparticles, which also has the smallest average size of 36.3 nm The compositions of elements in the nanocomposites were showed by Energy Dispersive X-ray Spectrometry (EDX). All elements of Ti, O, and Zn are observed as major components which confirm the presence of TiO2and ZnO in the composite. X-ray Diffraction (XRD) patterns of the nanocomposites show ZnO formed on TiO2nanoparticles are hexagonal with a wurtzite structure and it revealed ZnO/TiO2thin films were succesfully deposited as nanocomposites of ZnTiO3at 100 W,Zn2TiO4at 150 W and Zn2Ti3O8at 200 W and above.


2007 ◽  
Vol 330-332 ◽  
pp. 185-188
Author(s):  
Gultekin Goller ◽  
Can Cekli ◽  
Ipek Akin ◽  
Erdem Demirkesen

The aim of this study is to find out the crystallization behaviour and in-vitro bioactivity character of machinable glass ceramics having different ratios of Na/K mica and apatite phases, to ascertain the best machinable composition. In order to investigate the bioactivity behavior of the samples the simulated body fluid (SBF) was prepared. Samples were removed from the solution after 1 hour, 1 day, 1, 2, 3 and 4 weeks. FEG-SEM was used to characterize the morphology of precipitation HCA layer on the surface depending on time. Molecular bonding characterization of HCA layers were carried out by using Fourier Transform Infrared Spectroscopy (FTIR) technique. The thin film X-ray diffraction (TF-XRD) analysis was used to characterize the variation of chemical composition on precipitated layer by time. Optimum results were obtained by the composition, containing 70wt% Na/K mica and 30wt% fluorapatite which had an average mica size of 3-4 microns.


2020 ◽  
Vol 1010 ◽  
pp. 573-578
Author(s):  
Sarfa Azian Ismail ◽  
Hasan Zuhudi Abdullah

Bioactive apatite, which is hydroxyapatite (HAP) with the chemical formula of Ca10(PO4)6(OH)2 have been extensively investigated for biomedical applications in bone and teeth implants due to its biocompatibility characteristics has similar physical-chemical characteristics with human bone. The issues to be highlighted here is to explore the potential of using food waste from goat bone to produce useful natural HAP. This study is to extract natural HAP powder from goat bone waste. The extraction process involved cleaning and boiling process, drying process, crushing, grinding and milling to obtain micron size powder of goat bone and joint. The sample then underwent a calcination process with 900°C, 1000°C, and 1100°C for goat bone and 900°C for goat joint with 3 hours holding time. The characteristic of produced HAP powder was characterised with Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The in vitro testing of HAP completed by using Simulated Body Fluid (SBF) and SEM to observe the microstructure of apatite formation. The XRD and EDS results show the HAP crystallinity and Ca/P ratio increase with the increasing of calcination temperature for bone. The bone-like apatite formation appeared in the goat bone and joint sample with calcination temperature 900°C, 1000°C, and 1100°C. The optimum hydroxyapatite is from goat bone sample with calcination temperature 1100°C due to the apatite growth fully cover the surface of the sample with a needle shape structure of the cauliflower structure.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1290
Author(s):  
Giji Skaria ◽  
Ashwin Kumar Kumar Saikumar ◽  
Akshaya D. Shivprasad ◽  
Kalpathy B. Sundaram

Copper indium oxide (Cu2In2O5) thin films were deposited by the RF magnetron sputtering technique using a Cu2O:In2O3 target. The films were deposited on glass and quartz substrates at room temperature. The films were subsequently annealed at temperatures ranging from 100 to 900 °C in an O2 atmosphere. The X-ray diffraction (XRD) analysis performed on the samples identified the presence of Cu2In2O5 phases along with CuInO2 or In2O3 for the films annealed above 500 °C. An increase in grain size was identified with the increase in annealing temperatures from the XRD analysis. The grain sizes were calculated to vary between 10 and 27 nm in films annealed between 500 and 900 °C. A morphological study performed using SEM further confirmed the crystallization and the grain growth with increasing annealing temperatures. All films displayed high optical transmission of more than 70% in the wavelength region of 500–800 nm. Optical studies carried out on the films indicated a small bandgap change in the range of 3.4–3.6 eV during annealing.


2013 ◽  
Vol 543 ◽  
pp. 277-280
Author(s):  
Marius Dobromir ◽  
Alina Vasilica Manole ◽  
Simina Rebegea ◽  
Radu Apetrei ◽  
Maria Neagu ◽  
...  

Rutile N-doped TiO2thin films were grown by RF magnetron sputtering on amorphous and crystalline substrates at room temperature. The surface elemental analysis, investigated by X-ray photoelectron spectroscopy indicated that the nitrogen content of the films could be adjusted up to values as high as 4.1 at.%. As demonstrated by the X-ray diffraction data, the as-deposited films (100 200 nm thick) showed no detectable crystalline structure, while after successive annealing in air for one hour at 400°C, 500°C and 600°C, the (110) rutile peaks occurred gradually as dominant features. The rutile phase in the films was confirmed by the band gap values of the deposited materials, which stabilized at 3.1 eV, for the thin films having 200 nm thicknesses.


Sign in / Sign up

Export Citation Format

Share Document