Self-Setting Biphase Porous Calcium Phosphate Cement

2007 ◽  
Vol 336-338 ◽  
pp. 1615-1617
Author(s):  
Jian Pan ◽  
Jie Mo Tian ◽  
Li Min Dong ◽  
Chen Wang ◽  
Qing Feng Zan

This work has achieved a novel self-setting biphase porous calcium phosphate cement (CPC). This biphase porous CPC is mainly formed by α-tricalcium phosphate (α-TCP) and β-tricalcium phosphate (β-TCP). The influence of the weight percent (wt%) of β-TCP of the powder was studied. The setting time is mainly 10-30min, and increasing with the weight percent of β-TCP. Powder ray diffraction (XRD) analysis showed that most α-TCP have turned to low-crystallinized HA after immersed in Simulated Body Fluid (SBF) of 37°C for 7 days. SEM observation showed that the resultants are mainly formed with micropores and microcrystallites, and more micropores turned out in cements with more β-TCP after immersed in SBF for 8 weeks.

2006 ◽  
Vol 309-311 ◽  
pp. 861-864 ◽  
Author(s):  
Byung Hyun Lee ◽  
Min Chul Kim ◽  
Kyoung Nam Kim ◽  
Kwang Mahn Kim ◽  
Seong Ho Choi ◽  
...  

In preliminary ageing test, the cement using only calcium phosphate glass as power phase cracked with 1 day in simulated body fluid because of high dissolution rate of the cement. We added 30 wt% of either β-TCP or HA to 70 wt% calcium phosphate glass as powder phase to control the dissolution rate of the cement and performed in vitro ageing test in simulated body fluid by dynamic protocol as well as static protocol to confirm the possibility of controlling. Adding either β-TCP or HA to the cement increases the setting time and decreases the compressive strength. In dynamic assay, the pH of extract is maintained over 7. However, pH decreased to around 5 in static assay. Therefore, weight loss by static protocol continuously increased for 14 days, while weight loss by dynamic protocol almost saturated. In XRD patterns of ageing cements, CaO peaks appeared. CaO peak was maximized most lately in dynamic assay of the cement adding HA and within 7 days, the cement adding HA showed higher weight loss. It is indicated that CaO formed in surface of the cement hinder the dissolution of the cement. In addition, compressive strength increased when the CaO peak was maximized.


2014 ◽  
Vol 906 ◽  
pp. 45-50
Author(s):  
Enori Gemelli ◽  
Fabio Nery ◽  
Nelson Heriberto Almeida Camargo ◽  
Vinicius André Rodrigues Henriques ◽  
Daiara Floriano da Silva

Titanium-based composites with bioactive phases were produced with TiH2and 10% in volume of calcium phosphate. The mixtures were prepared either by conventional powder metallurgy processing or by ultrasound, dried in a rotary evaporator, pressed at 600 MPa and vacuum-sintered at 1200 °C for 2 hours. Crystal phases of the as-fabricated composites are found to be α-Ti, CaTiO3and TixPyphase (s). The TixPyand CaTiO3phases resulted from the reaction between titanium and tricalcium phosphate at about 1130 °C. Calcium phosphate was better dispersed by ultrasound leading to a higher compressive strength of the composite and a more uniform Ca-P deposition in simulated body fluid solution.


2006 ◽  
Vol 309-311 ◽  
pp. 841-844
Author(s):  
S. Chauhan ◽  
M.P. Hofmann ◽  
R.M. Shelton

This study investigated the influence of the addition of various proteins to the liquid phase (albumin, fibrinogen and foetal bovine serum (FBS)) on the mechanical strength and setting time of a brushite forming calcium phosphate cement. Additions of 1wt% protein to the liquid phase led to a deterioration in compressive strength of the set cement by up to 50%. The setting time was not affected by adding albumin and FBS but was increased by 50% with admixtures containing fibrinogen. The conversion of the reactants, β-tricalcium phosphate and monocalcium phosphate, to brushite was found to be unaffected by addition of up to 10wt% proteins.


2011 ◽  
Vol 65 (5) ◽  
Author(s):  
Ľubomír Medvecký ◽  
Radoslava Štulajterová ◽  
Sergey Kutsev

AbstractThe biopolymer (polyhydroxybutyrate) microparticles-calcium phosphate composites were prepared by mechanical mixing of the basic composite components with the addition of hardening liquid after ethanol-composite mixture suspension moulding. The composite microstructures were more compact than the pure cement samples as confirmed by the lower values of specific areas and mesopore volumes. Both the specific areas and mesopore volumes decreased with soaking time in a simulated body fluid. The low polyhydroxybutyrate degradation in composites was found after soaking in simulated body fluid, which was terminated after one week. The formation of a dense apatite layer bonded directly to the surface of polyhydroxybutyrate microparticles was observed. The highest diametral tensile strength (13 MPa) and compressive strength (95 MPa) values of up to 50 % higher than in pure cement were measured in samples with 10 % of polyhydroxybutyrate. The addition of polyhydroxybutyrate microparticles had no effect on the setting time.


2007 ◽  
Vol 280-283 ◽  
pp. 1567-1570
Author(s):  
Jian Pan ◽  
Jie Mo Tian ◽  
Li Min Dong ◽  
Chen Wang

The setting behavior of fast-setting calcium phosphate cement (FSCPC) with mineral phase of bone was investigated to evaluate the possible value of the CPC for medical and dental application. Various aspects of the setting behavior such as setting time, mechanical strength and phase change of cement with time were measured by the Vicat needle method, diametral tensile strength measurement, and quantitative powder X-ray diffraction (XRD) analysis, respectively. The change of microstructure during the setting process was observed by Scanning Electron Microscope (SEM). The setting time of the CPC was 10-15min. As a result of its fast setting, set specimens of FSCPC showed high mechanical strength. Powder XRD analysis revealed faster conversion of FSCPC into HAP. SEM observation showed that the specimens are mainly formed with micropores and crystallites, and the phase composition of the set specimens is mainly low-crystallinity HAP at last.


2016 ◽  
Vol 33 (2) ◽  
pp. 38
Author(s):  
X.V Bui ◽  
T.D Thang

The main goal of this study is to elaborate and evaluate the physicochemical properties of the synthetic biphasic calcium phosphate (BCP) powder: an associate compound of hydroxyapatite (HA): Ca10(PO4)6(OH)2 and beta-tricalcium phosphate (β-TCP): Ca3(PO4)2. The new compound BCP has two advantages: high bioactivity (HA) and fast biodegradation (β-TCP). The obtained powder of BCP was prepared by the precipitate method. XRD analysis confirmed the synthetic material contained both HA and β-TCP crystalline phases. SEM images showed that the small particles of HA attached to bigger particles of β-TCP in the structure morphology of BCP. The in vitro experiment was carried out in static condition by soaking of a series of 50 mg BCP powder in 100 ml of simulated body fluid solution at different period of soaking time. The XRD and SEM methods studied the microstructureand chemical bond after soaking. The obtained results confirmed the bioactivity of synthetic BCP material by the formation of a new apatite layer on its surface.


2016 ◽  
Vol 720 ◽  
pp. 162-166
Author(s):  
M. Shahrezaee ◽  
Majid Raz ◽  
M. Sanati ◽  
Ali Sadeghi ◽  
Farbod Tondnevis ◽  
...  

In this study four types of calcium phosphate cement/bioactive glass composites has been synthesized via mixing and sol-gel method and the effect of hydroxyapatite/tricalcium phosphate ratio to its mechanical properties and setting time was investigated. The prepared samples were characterized using X-ray diffraction (XRD), foureir transform infra-red spectroscopy (FTIR), scanning electron microscopy (SEM), mechanical testing and setting time measurement. XRD analysis showed amorphous structure of the prepared bioactive glass. But the patterns of the prepared composite had sharp peaks because of their crystalline structure. FTIR analysis indicated that the composites had carbonated calcium phosphate structure. SEM micrographs illustrated amorphous calcium phosphate particles with irregular shapes. With increasing the HA/TCP ratio, Young's modulus and compressive strength of the composites increased from 179 to 453 MPa and from 20 to 38 MPa respectively. The setting time of the samples decreased with increasing the HA/TCP ratio from 22 to 18 minutes.


2015 ◽  
Vol 23 (1) ◽  
pp. 1-14
Author(s):  
Sudirman Sahid ◽  
◽  
Nor Shahida Kader Bashah ◽  
Salina Sabudin ◽  
◽  
...  

Author(s):  
Akiyoshi Shimatani ◽  
Hiromitsu Toyoda ◽  
Kumi Orita ◽  
Yuta Ibara ◽  
Yoshiyuki Yokogawa ◽  
...  

AbstractThis study investigated whether mixing low viscosity alginic acid with calcium phosphate cement (CPC) causes interconnected porosity in the CPC and enhances bone replacement by improving the biological interactions. Furthermore, we hypothesized that low viscosity alginic acid would shorten the setting time of CPC and improve its strength. CPC samples were prepared with 0, 5, 10, and 20% low viscosity alginic acid. After immersion in acetate buffer, possible porosification in CPC was monitored in vitro using scanning electron microscopy (SEM), and the setting times and compressive strengths were measured. In vivo study was conducted by placing CPC in a hole created on the femur of New Zealand white rabbit. Microcomputed tomography and histological examination were performed 6 weeks after implantation. SEM images confirmed that alginic acid enhanced the porosity of CPC compared to the control, and the setting time and compressive strength also improved. When incorporating a maximum amount of alginic acid, the new bone mass was significantly higher than the control group (P = 0.0153). These biological responses are promising for the translation of these biomaterials and their commercialization for clinic applications.


Sign in / Sign up

Export Citation Format

Share Document