The Effect of the Microstructure on the Wear-Resistance in the Welding Deposited Metal

2007 ◽  
Vol 353-358 ◽  
pp. 766-769
Author(s):  
Yuan Bin Zhang ◽  
Hui Luo ◽  
Guo Fan Wang

The microstructure and wear-resistance of the welding deposited metal of Fe-Ti-Nb-V-C and Fe-Cr-W-Mo-C alloy system (with American MG700 as example) are studyed by using SEM , TEM and MM200 wear testing machine. It is revealed that Ti and Nb promote the formation of dispersed MC type carbide granules, while the carbides of Cr and W or Mo tend to precipitate along grain boundary. The formation of MC carbide granules depletes the carbon content in the matrix, and then low carbon martensite matrix can be achieved. The hard and tough matrix and the granular carbides improve the wear-resistance of the deposited metal. But excessive Ti and Nb induce the formation of bigger granules with sharp corner and result too soft matrix, then the wear-resistance decrease. As to the Fe-Cr-W-Mo-C alloy system, network carbides and high carbon martensite matrix make the deposited metal very brittle. During wearing process, the propagating of microcrack in the matrix induces lots of scraps flake off, which decrease the wear-resistance of the deposited metal. The deposited metal of Fe-0.64Ti-1.18Nb-2.18V-1.43Cr-0.97C alloy system in current study achieve the best wear-resistance.

2011 ◽  
Vol 279 ◽  
pp. 126-131 ◽  
Author(s):  
Wen Bo Tang ◽  
Yun Gang Guo ◽  
Hon Grui Wang

Hardfacing is one of the most useful and economical ways to improve the performance of components submitted to severe wear conditions. In this paper, a new kind of alloy called Fe-Cr-C-Nb/Ti alloy system for wear resistant successfully with the shielded metal arc welding (SMAW) method has been studied. The microstructure and wear resistant of hardfacing alloys reinforced with primary carbides were compared in this study. Meanwhile, the average hardness, the abrasion weight loss and microstructure of deposited metal were systematically studied by optical microscopy, scanning electronic microscopy and energy dispersive spectrum analysis. The results showed that the microstructure of the best optimizing hardfacing layer was the mixed martensite and little retained austenite, and NbC/TiC particles distributing dispersively in the matrix. The amount of low-carbon martensite and high-carbon martensite was identical. The alloy system showed high wear resistance due to the formation of dispersed MC type carbides and good toughness due to the exist of low carbon martensite in the matrix. The hardfacing alloy reinforced with complex carbides was also investigated, the microstructure was analyzed and its hardness and wear resistance were evaluated. In conclusion, the distribution, the chemical composition and the amount of the carbides, as well as the matrix microstructure are all factors to influence the crack resistance, hardness and wear resistance of the hardfacing alloys.


Coatings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 265 ◽  
Author(s):  
Lin Zong ◽  
Ning Guo ◽  
Rongguang Li ◽  
Hongbing Yu

The Fe-3Ti-xB-4C (x = 1.71, 3.42, 5.10, 6.85 wt. %) hardfacing alloys are deposited on the surface of a low-carbon steel by plasma transferred arc (PTA) weld-surfacing process. Microstructure, hardness and wear resistance have been investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), Rockwell hardness tester and abrasive wear testing machine, respectively. The results show that the microstructure in all alloys is composed of austenite, martensite, Fe23(C,B)6, Ti(C,B) and Fe2B. The volume fraction of eutectic borides and Ti(C,B) carbides increases with increasing B content. Many brittle bulk Fe2B phase arises when the boron content increases to 6.85%, which causes the formation of microcracks in the hardfacing layer. The microhardness of the hardfacing alloys is significantly improved with the B addition, however, the wear resistance of hardfacing alloys increases firstly and then decreases with increasing of B content. The hardfacing alloy with the 5.10% B content has the best wear resistance, which is attributed to high volume fraction of eutectic borides and fine Ti(C,B) particles distributed in the austenite and lath martensite matrix with high hardness and toughness. The formation of brittle bulk Fe2B particles in the hardfacing alloy with the 6.85% B leads to the fracture and spalling of hard phases during wear, thus, reducing the wear resistance.


2014 ◽  
Vol 490-491 ◽  
pp. 29-33 ◽  
Author(s):  
Wen Bo Tang ◽  
Cong Hui Lu ◽  
Yan Peng Li

TiCp/Al composites coating was in-situ synthesized on the L1060 alloy surface by TIG cladding. The microstructure and the phase of the coating were analyzed by OM, SEM, ADS and XRD, and the properties was been tested by micro-hardnessmeter and wear testing machine. The results show that the composite coating has no porosity, inclusions and other defects. The microstructure of the composite coating mainly consists of TiC particle and aluminum. Microstructural evidence suggests that the formation of TiC occur not only by reaction between Ti dissolved in Al and Al4C3, but also by reaction between C dissolved in Al and Al3Ti. The hardness of the composite coating obtained by TIG cladding is up to 120HV0.2. The wear resistance of composite coating is 1.6 times more than that of the matrix.


2007 ◽  
Vol 353-358 ◽  
pp. 1692-1695
Author(s):  
Yuan Bin Zhang ◽  
Yao Wu Shi

The interface bonding between the carbides and the solid solution matrix is studied in surfacing welding metal of Fe-Nb-Ti-V-C alloy system. Both the quenched welding droplets and the deposited metal are investigated by means of SEM and TEM. In the deposited metal, the carbides are dispersed, and the matrix is low carbon martensite. According to welding metallurgical characteristics, it is deduced that the carbides are formed during the droplets stage and then transmit into the welding pool. When the welding pool solidify, the carbides serve as nucleation site, so the interface between the carbides and the matrix is clean and free from other reactants. The selected area electron diffraction (SAED) analysis reveals that the mismatch between the two phase is δ= (6.1~8.3)%, and there exist a crystal parallel relationship at the interface: (002)α-Fe // (220)(NbTiV)C. The metallurgical bonding between the carbides and the matrix favors to prevent the carbides to detach from the matrix during wear process, so the surfacing welding metal can achieve good wear-resistance.


2017 ◽  
Vol 17 (1) ◽  
pp. 143-146 ◽  
Author(s):  
S. Sobula ◽  
E. Olejnik ◽  
T. Tokarski

Abstract Wear resistance of TiC-cast steel metal matrix composite has been investigated. Composites were obtained with SHSB method known as SHS synthesis during casting. It has been shown the differences in wear between composite and base cast steel. The Miller slurry machine test were used to determine wear loss of the specimens. The slurry was composed of SiC and water. The worn surface of specimens after test, were studied by SEM. Experimental observation has shown that surface of composite zone is not homogenous and consist the matrix lakes. Microscopic observations revealed the long grooves with SiC particles indented in the base alloy area, and spalling pits in the composite area. Due to the presence of TiC carbides on composite layer, specimens with TiC reinforced cast steel exhibited higher abrasion resistance. The wear of TiC reinforced cast steel mechanism was initially by wearing of soft matrix and in second stage by polishing and spalling of TiC. Summary weight loss after 16hr test was 0,14÷0,23 g for composite specimens and 0,90 g for base steel.


2021 ◽  
Vol 67 (1-2) ◽  
pp. 27-35
Author(s):  
Idawu Yakubu Suleiman ◽  
Auwal Kasim ◽  
Abdullahi Tanko Mohammed ◽  
Munir Zubairu Sirajo

This paper aims to investigate the mechanical (tensile, hardness, impact, elongation), microstructure and wear behaviours of aluminium alloy reinforced with mussel shell powder (MSP) at different weight percentages (0 wt. % to 15 wt. %) at 3 wt. % interval. The mussel shell powder was characterized by X-ray fluorescence (XRF). The matrix and the composites’ morphology were studied using a scanning electron microscope attached with energy dispersive spectroscopy for the distribution of mussel shell powder particles within the matrix. The wear behaviour of the alloy and composites produced at various reinforcements were carried out using a Taber abrasion wear-testing machine. The XRF showed the compositions of MSP to contain calcium oxide (95.70 %), silica (0.83 %) and others. Mechanical properties showed that tensile values increase with increases in MSP, hardness value increases from 6 wt. % to 15 wt. % of MSP. The impact energy decreased from 42.6 J at 3 wt. % to 22.6 J at 15 wt. %; the percentage elongation also decreased from 37.4 % at 3 wt. % to 20.5 % at 15 wt. % MSP, respectively. The bending stress results increase with increases in the percentage of reinforcement. The morphologies revealed that uniform distribution of MSP within the matrix resulted to improvement in mechanical properties. The wear resistance of the composites increases with increase in the applied load and decreases with increases in the weight percentage of MSP and can be used in the production of brake pads and insulators in the automobile industry.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1749 ◽  
Author(s):  
Qing Zhang ◽  
Jie Gu ◽  
Shuo Wei ◽  
Ming Qi

The dry sliding wear behavior of the Al-12Si-CuNiMg matrix alloy and its composite reinforced with Al2O3 fibers was investigated using a pin-on-disk wear-testing machine. The volume fraction of Al2O3 fibers in the composite was 17 vol.%. Wear tests are conducted under normal loads of 2.5, 5.0, and 7.5 N, and sliding velocities of 0.25, 0.50, and 1.0 m/s. Furthermore, the worn surfaces of the matrix alloy and the composite were examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the wear resistance of the composite was inferior to that of the matrix alloy, which could be attributed to the high content of reinforcement and casting porosities in the composite. Worn-surface analysis indicates that the dominant wear mechanisms of both materials were abrasive wear and adhesive wear under the present testing conditions.


2017 ◽  
Vol 24 (2) ◽  
pp. 195-202 ◽  
Author(s):  
Aiguo Liu ◽  
Da Li ◽  
Fanling Meng ◽  
Huanhuan Sun

AbstractThe volume fraction, dissolution, and segregation of WC particles in metal-matrix composites (MMCs) are critical to their wear resistance. Low carbon steel substrates were precoated with NiCrBSi coatings and processed with gas tungsten arc melt injection method to fabricate MMCs with high volume fraction of WC particles. The microstructures and wear resistance of the composites were investigated. The results showed that the volume fraction of WC particles increased with decreasing hopper height and was as high as 44% when hopper height was 100 mm. The dissolution of WC particles was minimal. The content of the alloying elements decreased from the top to the bottom of the matrix. More WC particles dissolved in the overlapping area, where Fe3W3C carbide blocks could be found. The wear loss of the MMCs after 40 min was 6.9 mg, which is 76 times less than that of the substrate after the 4 min test.


2012 ◽  
Vol 557-559 ◽  
pp. 1533-1538 ◽  
Author(s):  
Shao Ling Xia ◽  
Lin Qi Zhang ◽  
Dong Mei Wang ◽  
Wen Jun Zou ◽  
Jin Peng ◽  
...  

Tribology behavior of Nanodiamond(ND) polyurethane(PU)/epoxy(EP) interpenetrating polymer networks hybrid materials were tested by friction wear testing machine. Results showed that when EP content was 30%, resultant PU/EP IPNs exhibited best wear resistance. For ND-PU/EP IPNs hybrids, when the ND addition was 0.2wt%, the best wear resistant ability was obtained. Under dry condition, the effect of wear parameters, such as rotational speed, load and central distance to friction and abrasion value were also investigated.


Author(s):  
D. V. Priyatkin ◽  
A. A. Artem'ev ◽  
P. V. Loyko ◽  
G. N. Sokolov ◽  
V. I. Lysak

Metallographic studies of the microstructure of the experimental type of the deposited alloy of the Fe - C - Cr - Ni - Mn - Mo - Ti - Nb alloying system were performed. The chemical and granulometric composition of the metal-strengthening phases has been determined. The weld metal was tested for resistance to gas-abrasive wear at elevated temperatures. The wear resistance of the deposited metal was diagnosed by sclerometry with obtaining images of tracks from the indenter using atomic force microscopy. The character of microplastic deformation of worn surface layers of the alloy is investigated. The influence of the structural phase composition and hardening phases in the deposited metal on its wear resistance is discussed. Promising ways to further increase the resistance of the experimental alloy to gas-abrasive wear are determined.


Sign in / Sign up

Export Citation Format

Share Document