The Process of Interior Progressive Addition Lens

2007 ◽  
Vol 364-366 ◽  
pp. 1054-1060 ◽  
Author(s):  
Lin Ling Qin ◽  
Jing Chi Yu ◽  
Hao Chen

The characteristics of Progressive addition lens (PAL) are described in this paper. Theoretical analysis of advantages of Interior PAL is put forward, and the measurement results of Interior PAL are given. Theoretical and measurement results are consistent by comparing Interior PAL and Exterior PAL. Then the working procedures of freeform CNC machine of making Interior PAL are introduced concisely. Also, the experiments were carried out to analyzing the processing results in turning and polishing. From the results, it is explicit that the lens’ form accuracy is controlled in turning and lens’ better surface finish can be obtained in polishing. The factors affecting surface roughness are discussed explicitely based on experiment. The effects of lens material and cutting speed on surface roughness in turning were investigated. The experimental data show that better surface finish can be obtained by using lens material with higher rigidity and using higher cutting speed. Polishing time and pressure influence surface roughness signally in polishing. The reasonable ranges of polishing parameters which could bring about better surface finish are obtained in the experiment. The ranges of polishing time and polishing pressure are 50s—100s and 0.3bar—0.6bar (1bar=0.1MPa) respectively.

2010 ◽  
Vol 447-448 ◽  
pp. 51-54
Author(s):  
Mohd Fazuri Abdullah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Abu Bakar Sulong ◽  
Jaharah A. Ghani

The effects of different cutting parameters, insert nose radius, cutting speed and feed rates on the surface quality of the stainless steel to be use in medical application. Stainless steel AISI 316 had been machined with three different nose radiuses (0.4 mm 0.8 mm, and 1.2mm), three different cutting speeds (100, 130, 170 m/min) and feed rates (0.1, 0.125, 0.16 mm/rev) while depth of cut keep constant at (0.4 mm). It is seen that the insert nose radius, feed rates, and cutting speed have different effect on the surface roughness. The minimum average surface roughness (0.225µm) has been measured using the nose radius insert (1.2 mm) at lowest feed rate (0.1 mm/rev). The highest surface roughness (1.838µm) has been measured with nose radius insert (0.4 mm) at highest feed rate (0.16 mm/rev). The analysis of ANOVA showed the cutting speed is not dominant in processing for the fine surface finish compared with feed rate and nose radius. Conclusion, surface roughness is decreasing with decreasing of the feed rate. High nose radius produce better surface finish than small nose radius because of the maximum uncut chip thickness decreases with increase of nose radius.


Author(s):  
Prof. Hemant k. Baitule ◽  
Satish Rahangdale ◽  
Vaibhav Kamane ◽  
Saurabh Yende

In any type of machining process the surface roughness plays an important role. In these the product is judge on the basis of their (surface roughness) surface finish. In machining process there are four main cutting parameter i.e. cutting speed, feed rate, depth of cut, spindle speed. For obtaining good surface finish, we can use the hot turning process. In hot turning process we heat the workpiece material and perform turning process multiple time and obtain the reading. The taguchi method is design to perform an experiment and L18 experiment were performed. The result is analyzed by using the analysis of variance (ANOVA) method. The result Obtain by this method may be useful for many other researchers.


2014 ◽  
Vol 902 ◽  
pp. 95-100 ◽  
Author(s):  
Heraldo J. Amorim ◽  
Augusto O. Kunrath Neto

The aim of this work is to analyze the tool wear effects on surface finish of machined components. Long-term machinability tests were performed for ASTM 1040 and 1045 carbon steels with carbide tools, in which tool wear and surface roughness were periodically evaluated. Surface finish was analyzed as a function of processed material and cutting speed with new machining tool, and a significant influence was found for cutting speed at a confidence interval of 10%. When evaluated as a function of time and tool wear, surface roughness showed an exponential relationship with both variables. However, a high dispersion occurs close to the end of tool life, especially for AISI 1040 steel. Weak influence of cutting speed (for the range of speeds tested) was observed on the relationship between tool wear and surface finish, indicating that a single equation can describe its behavior for all studied conditions. The relationship between the surface roughness and the cutting time was found to be stronger for the ABNT 1040 steel.


2014 ◽  
Vol 68 (4) ◽  
Author(s):  
M. S. Said ◽  
J. A. Ghani ◽  
R. Othman ◽  
M. A. Selamat ◽  
N. N. Wan ◽  
...  

The purpose of this research is to demonstrate surface roughness and chip formation by the machining of Aluminium silicon alloy (AlSic) matrix composite, reinforced with aluminium nitride (AlN), with three types of carbide inserts present. Experiments were conducted at various cutting speeds, feed rates, and depths of cut, according to the Taguchi method, using a standard orthogonal array L9 (34). The effects of cutting speeds, feed rates, depths of cut, and types of tool on surface roughness during the milling operation were evaluated using Taguchi optimization methodology, using the signal-to-noise (S/N) ratio. The surface finish produced is very important in determining whether the quality of the machined part is within specification and permissible tolerance limits. It is understood that chip formation is a fundamental element that influences tool performance. The analysis of chip formation was done using a Sometech SV-35 video microscope. The analysis of results, using the S/N ratio, concluded that a combination of low feed rate, low depth of cut, medium cutting speed, and an uncoated tool, gave a remarkable surface finish. The chips formed from the experiment varied from semi–continuous to discontinuous. 


Author(s):  
Brian Boswell ◽  
Mohammad Nazrul Islam ◽  
Ian J Davies ◽  
Alokesh Pramanik

The machining of aerospace materials, such as metal matrix composites, introduces an additional challenge compared with traditional machining operations because of the presence of a reinforcement phase (e.g. ceramic particles or whiskers). This reinforcement phase decreases the thermal conductivity of the workpiece, thus, increasing the tool interface temperature and, consequently, reducing the tool life. Determining the optimum machining parameters is vital to maximising tool life and producing parts with the desired quality. By measuring the surface finish, the authors investigated the influence that the three major cutting parameters (cutting speed (50–150 m/min), feed rate (0.10–0.30 mm/rev) and depth of cut (1.0–2.0 mm)) have on tool life. End milling of a boron carbide particle-reinforced aluminium alloy was conducted under dry cutting conditions. The main result showed that contrary to the expectations for traditional machined alloys, the surface finish of the metal matrix composite examined in this work generally improved with increasing feed rate. The resulting surface roughness (arithmetic average) varied between 1.15 and 5.64 μm, with the minimum surface roughness achieved with the machining conditions of a cutting speed of 100 m/min, feed rate of 0.30 mm/rev and depth of cut of 1.0 mm. Another important result was the presence of surface microcracks in all specimens examined by electron microscopy irrespective of the machining condition or surface roughness.


2019 ◽  
Vol 26 (4) ◽  
pp. 179-184
Author(s):  
Justyna Molenda

AbstractNowadays lot of scientific work inspired by industry companies was done with the aim to avoid the use of cutting fluids in machining operations. The reasons were ecological and human health problems caused by the cutting fluid. The most logical solution, which can be taken to eliminate all of the problems associated with the use of cooling lubricant, is dry machining. In most cases, however, a machining operation without lubricant finds acceptance only when it is possible to guarantee that the part quality and machining times achieved in wet machining are equalled or surpassed. Surface finish has become an important indicator of quality and precision in manufacturing processes and it is considered as one of the most important parameter in industry. Today the quality of surface finish is a significant requirement for many workpieces. Thus, the choice of optimized cutting parameters is very important for controlling the required surface quality. In the present study, the influence of different machining parameters on surface roughness has been analysed. Experiments were conducted for turning, as it is the most frequently used machining process in machine industry. All these parameters have been studied in terms of depth of cut (ap), feed rate (f) and cutting speed (vc). As workpiece, material steel S235 has been selected. This work presents results of research done during turning realised on conventional lathe CDS 6250 BX-1000 with severe parameters. These demonstrate the necessity of further, more detailed research on turning process results.


Author(s):  
Patricia Mun˜oz de Escalona ◽  
Paul G. Maropoulos

Surface finish is one of the most relevant aspects of machining operations, since it is one of the principle methods to assess quality. Also, surface finish influences mechanical properties such as fatigue behavior, wear, corrosion, etc. The feed, the cutting speed, the cutting tool material, the workpiece material and the cutting tool wear are some of the most important factors that affects the surface roughness of the machined surface. Due to the importance of the martensitic 416 stainless steel in the petroleum industry, especially in valve parts and pump shafts, this material was selected to study the influence of the feed per tooth and cutting speed on tool wear and surface integrity. Also the influence of tool wear on surface roughness is analyzed. Results showed that high values of roughness are obtained when using low cutting speed and feed per tooth and by using these conditions tool wear decreases prolonging tool life.


2011 ◽  
Vol 383-390 ◽  
pp. 7133-7137 ◽  
Author(s):  
Komson Jirapattarasilp ◽  
Sittichai Kaewkuekool ◽  
Worapong Phongphatrawut

The aim of this research was to study factors, which was influenced on surface roughness in vertical milling of hardened medium carbon steel. The specimen was medium carbon steel grade JIS S50C that was hardened at 56± 2 HRC. Full factorial experimental design was conducted by 3 factors and 3 levels (33 design) with 2 replications. Studied factors were consisted of cutting speed, feed rate, and air coolant pressure. The results revealed that influenced factor affected to surface roughness was cutting speed and feed rate which showed significantly different. Higher cutting speed would cause on better surface quality. On the other hand, poorer surface quality was produced by higher feed rate. However, factors interaction were found between cutting speed with air coolant pressure and feed rate with air coolant pressure that significantly influenced to surface roughness. The interaction of high cutting speed with high air coolant pressure would be better quality of surface finish and lower feed rate with high air coolant pressure would be better surface quality.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Manoj Nayak ◽  
Rakesh Sehgal ◽  
Rajiv Kumar Sharma

Tool steels in metal forming industry are exposed to complex and aggressive conditions due to multiple effects (mechanical, thermal, or tribological loading) and require defined mechanical properties. Also machining of tool steel with poor machinability like AISI D6 to manufacture form tools is an extremely difficult task. This paper investigates the microstructural, mechanical, and machining behavior of AISI D6 steel in annealed and hardened conditions. Various mechanical tests indicated good hardenability, improved surface hardness, and phenomenal improvement in tensile strength but extremely poor resistance to impact in both annealed and hardened condition for this steel. The machining characteristics of AISI D6 steel were evaluated using a 2k unreplicated full factorial design approach and statistical techniques have been used to assess and identify the significant factors, namely, cutting speed, feed, depth of cut, and approach angle, in minimizing surface roughness and main cutting force while machining this steel with a carbide tool. It was found that the depth of cut, feed, and approach angle are the most significant factors affecting the surface roughness and depth of cut and feed affect the main cutting force. Cutting speed has no effect on surface roughness and main cutting force in machining of the steel in annealed condition.


2014 ◽  
Vol 887-888 ◽  
pp. 1236-1239
Author(s):  
Wang Hao ◽  
Yu Zhang ◽  
Qi Ming Xie

Single-point diamond turning (SPDT) is a machining process making use of a monocrystal diamond tool which possesses nanometric edge sharpness, form reproducibility and wear resistance. The process is capable of producing components with micrometre to submicrometre form accuracy and surface roughness in the nanometre range. The cutting parameters that can make an effect on surface finish and form accuracy of SPDT such as spindle speedfeed ratedepth of cut and so on.


Sign in / Sign up

Export Citation Format

Share Document