Preparation and Characterization of (1-x)BiScO3-xPbTiO3 Ceramics by Two-Step Sintering

2008 ◽  
Vol 368-372 ◽  
pp. 8-10 ◽  
Author(s):  
Ting Ting Zou ◽  
Xiao Hui Wang ◽  
Long Tu Li

High-performance fine-grain (1-x)BiScO3-xPbTiO3 ceramics were prepared by two-step sintering method. Influences of sintering temperature, holding time, and composition on the microstructure and properties were discussed. The BSPT ceramics obtained via two-step sintering reaches density higher than 95% at a low temperature of 800°C without any sintering aid, and the grain size of the ceramics is also effectively controlled. Excellent piezoelectric properties between the composition of x=0.63 and x=0.64 reveals a probable MPB in this range, suggesting a potential approach to pursue high performance BSPT ceramics.

2011 ◽  
Vol 415-417 ◽  
pp. 1679-1682
Author(s):  
Hai Tao Li ◽  
Bo Ping Zhang ◽  
Qian Li ◽  
Rong Hui Xu

Li-doped (Na, K)NbO3lead-free piezoelectric ceramics with nominal composition of [Li0.065(Na0.535K0.48)0.95]NbO3were prepared by normal sintering method, and its phase structure, microstructure and electric properties were studied with a special emphasis on the influence of sintering temperature in the range of 950-1020 oC. The result of XRD analysis indicates that a polymorphic phase transition (PPT) separating orthorhombic and tetragonal phases was found at the temperature of 950 oC, whereby enhanced piezoelectric properties of d33=255 pC/N and kp= 44.5% were obtained although the density was low. Our study indicates that the importance of PPT for enhancing electric properties in niobate-based ceramics at low temperature.


2014 ◽  
Vol 616 ◽  
pp. 157-165 ◽  
Author(s):  
Chang Lian Chen ◽  
Hong Quan Wang ◽  
Jia You Ji ◽  
Ma Ya Luo ◽  
Bo Wu ◽  
...  

In this paper, using ZrO2 and Ca (NO3)•4H2O as raw materials, we prepared a series of calica stabilized zirconia (CSZ) ceramics by pressureless sintering method. The results show that the relative densities of all sintered samples are above 90%, and the sintered samples are composed of cubic, tetragonal and monoclinic ZrO2, and the main phase is cubic ZrO2 and tetragonal ZrO2. The content of cubic phase increases with the increase of sintering temperature and adding CaO content. The grain size of the sintered samples is relatively uniform and some pores exist. Increasing the additive amount of CaO, the conductivity first rises and then decreases, and the conductivity value of the sample containing 5wt% CaO is the maximum. When the sintering temperature is up to 1600 oC, the conductivity of the sample containing 5wt% CaO is up to 0.016S•cm-1 at 800 oC. Furthermore, the conductivity of sintered samples is increasing with the increase of test temperature according to the Arrhenius equation.


2010 ◽  
Vol 25 (3) ◽  
pp. 471-475 ◽  
Author(s):  
Sea-Hoon Lee ◽  
Byung-Nam Kim ◽  
Hidehiko Tanaka

Al8B4C7 was used as a sintering additive for the densification of nano-SiC powder. The average grain size was approximately 70 nm after sintering SiC-12.5wt% Al8B4C7 at 1550 °C. The densification rate strongly depended on the sintering temperature and the applied pressure. The rearrangement of SiC particles occurred at the initial shrinkage, while viscous flow and liquid phase sintering became important at the middle and final stage of densification.


2018 ◽  
Vol 281 ◽  
pp. 224-229 ◽  
Author(s):  
Fang Wang ◽  
Ming Han Xu ◽  
Ai Xia Chen ◽  
Long Tao Liu ◽  
Zhi Hui Li ◽  
...  

YAG materials have a number of unique properties, the application is very extensive, the burn is due to the temperature is too high or the residence time at high temperatures is caused. The undercurrent is the sintering temperature is too low or the holding time is not enough, resulting in product performance is too low or too small shrinkage. In this paper, the effect of sintering temperature on properties of YAG porous ceramics was investigated. The results showed that the firing temperature of the ingredients will be different and cause the same sintering process and sintering additives content of different samples burned. The increase in the content of SiO2 in the furnish with the sintering aid tends to occur. the effect of temperature on the mechanical properties of the samples after sintering was significant, so the raw materials include 60wt%YAG, 10wt% CaO, 10wt% SiO2 and 20wt% soluble starch, the molding process in 20MPa pressure 10min, the sintering at 1500°C for 2h, the sample porosity is 42.2%, the compressive strength is 5.8MPa, the outside shape is keep intact and the better pore microstructure is shown.


2015 ◽  
Vol 782 ◽  
pp. 113-118
Author(s):  
Ying Mei Teng ◽  
Zhao Hui Zhang ◽  
Zi Zhou Yuan

The bulk nanocrystalline (NC) aluminum (Al) 5083 was synthesized by spark plasma sintering (SPS) technique with low initial pressure of 1 MPa, high holding pressure of 300 MPa and holding time of 4 min at different sintering temperatures, using surface passivated nanopowders. The effect of sintering temperature on microstructure and mechanical properties of the bulk NC Al 5083 were investigated. Results indicate that the density, grain size, the hardness and the compressive strength of the bulk NC Al 5083 increase with an increase in sintering temperature. The mechanical properties of the material are greatly improved due to the fine grain size. The bulk NC Al 5083 sintered at 723 K has the highest micro-hardness of 2.37 GPa and the best compressive strength of 845 MPa.


2013 ◽  
Vol 30 (4) ◽  
pp. 217-220 ◽  
Author(s):  
Hui Zhang ◽  
Xiaohui Wang ◽  
Jian Fang ◽  
Yichi Zhang ◽  
Longtu Li

Author(s):  
Chen Mei-fang ◽  
Cao Sheng-qiang ◽  
Tao Zhi-yong

In order to gain high strength, fine grain size, stronger anti-corrosion property, and especially low permeability, the material 022Cr19Ni10N was chosen to manufacture the Rod Travel Housing Forging (RTHF) for Control Rod Drive Mechanism (CRDM). But, cracks were found in some forgings failing to meet the requirements of ultrasonic testing (UT). The causes of the forging cracks of this austenitic stainless steel forging were investigated by means of metallography, scanning electron microscopy (SEM) and other experimental methodology. The results indicated that the second δ-ferrite phase leads to the forging cracks between γ-δ interface during the low temperature forging process, and finally leads to the forging failure. It’s found that the cracks are distributing along the stripe δ-ferrite, and almost distributing in the same area as the large size δ-ferrite by metallography & SEM microstructure observation. The δ-ferrite is firstly found in the electroslag ingot, and in which, the distribution and size is different from the case to the core. The largest size δ-ferrite is around the core area, and this characteristic passes on to the final forging microstructure, although the shape, quantity & distribution of the δ-ferrite changed during the manufacturing process. Most forging cracks were found around the core area of the forging by UT examination. In the final forging process, when the forging temperature drops to 750∼850°C, the δ-ferrite have been forged to stripe shape and hundreds-micron size while the plasticity of the austenite reduce. What’s more, there are large hot plasticity differences between the δ-ferrite and the austenite, so the forging cracks initiate between γ-δ interface and extend to the area around to be a long crack in the low temperature forging process. In order to avoid the forging cracks in the Rod Travel Housing Forging, it’s necessary to reduce the content of δ-ferrite or improve the final forging temperature. Improving the final forging temperature, to guarantee the plasticity of the δ-ferrite and austenite, is another process to reduce the cracks. But while the temperature improves, the grain size grows rapidly, and may form mixed structure. So the most effective mean to reduce the content of δ-ferrite is to redesign the chemical components, mainly by increasing the nitrogen content from 0.06 (wt, %) to 0.12(wt, %), which makes the low temperature forging process for fine grain size possible. In the high-nitrogen-content forging, the δ-ferrite distributed sporadically and no δ-ferrite strip is found. By increasing the austenite forming elements (especially nitrogen), the cracks during low temperature forging process are avoided. What’s more, owning to the optimization of chemical compositions and manufacturing processes, the Rod Travel Housing Forging got fine grain size, low relative permeability, and good comprehensive mechanical properties with the ultimate tensile strength up to 570MPa.


2018 ◽  
Vol 25 (5) ◽  
pp. 957-961 ◽  
Author(s):  
Kaiyue Wang ◽  
Huijun Wang ◽  
Yi Zhou ◽  
Guomin Li ◽  
Yaqiao Wu ◽  
...  

AbstractIn this study, the mullite-quartz-based proppants were successfully prepared by using the coal gangue as the raw materials. Then, the effects of the additive and the sintering temperature on the composition, microstructure, and properties of the proppants were investigated. Results showed that the proppants sintered at 1250°C with the 10 wt% bauxite additive presented the best performance, which was very close to that of the quartz-proppant, and met the operational requirements of the 52 MPa coal bed methane wells. The viscous flow mechanism of the liquid phase formed during the sintering process also promoted the arrangement of the grains, thus benefiting the densification and the strength of the proppants.


Author(s):  
Nguyen Thi Tuyet Trinh ◽  
Bui Thi Ngoc Anh ◽  
Le Tran Uyen Tu ◽  
Dung Thi Hoai Trang ◽  
Le Thi Lien Phuong ◽  
...  

Lead-free piezoelectric ceramic 0.48Ba[Zr0.2Ti0.8]O3 - 0.52[Ba0.7Ca0.3]TiO3 (BZT-BCT) with a nanostructure was manufactured by traditional ceramic technology. Nanostructure and the sintering aid reduce the calcinating temperature as well as the sintering temperature and some electrical properties of BZT-BCT ceramics systems are researched. The results show that they can reduce the calcinating and sintering temperatures of ceramics systems from 1250 0C and 1450 0C to 1170 0C and 1350 0C. Moreover, the piezoelectric properties of the 0.48BZT - 0.52BCT at the optimal calcinating and sintering temperature will be discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document