Experimental Study on the Shear Behaviors of the SRHSHPC Composite Frame Columns

2008 ◽  
Vol 385-387 ◽  
pp. 149-152
Author(s):  
Liang Zhang ◽  
Shan Suo Zheng ◽  
Qing Niing Li ◽  
Lei Li ◽  
Bin Wang

The shear behaviors of steel reinforced high strength and high performance concrete (SRHSHPC) composite frame columns are studied through the test on a number of SRHSHPC specimens with grade of concrete strength varied from C80 to C120 subjected to constant axial compression and cyclically varying horizontal load. Four influencing factors, namely, shear span ratio, axial compression ratio, stirrup ratio and concrete strength, are taken into consideration in the test, and strain gauges are respectively placed on steel web, stirrups as well as reinforcement bars to study the shear mechanism of SRHSHPC composite columns. According to test results, the shear failure patterns and shear mechanism of the specimens are discussed. By analyzing the contribution of the steel web, concrete, stirrups and reinforcement bars to the shear capacity, the shear mechanism of the SRHSHPC composite columns is figured out. Therefore, the influence of shear span ratio, axial compression ratio, stirrup ratios and concrete strength on shear behaviors of the SRHSHPC frame columns is clear. Finally, concrete truss model and principle of accumulation are applied to discuss the shear capacity and a calculation model for shear strength of the SRHSHPC composite columns is established. It is indicated that the shear behaviors of the SRHSHPC frame composite columns are excellent, and the calculated results of shear strength have good conformity with test results.

2015 ◽  
Vol 777 ◽  
pp. 190-193 ◽  
Author(s):  
Gen Tian Zhao ◽  
Qiu Wen Hu

In order to learn seismic behavior of partially encased concrete composite columns, experimental study on five H steel partially encased concrete composite columns was carried out under low cyclic loading. The main parameters were the axial compression ratio, steel ratio, shear span ratio. The test results show that deformation ability decreases as axial compression ratio increases; and as steel ratio increases, horizontal bearing capacity and deformation ability increases.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Dafu Cao ◽  
Jiaqi Liu ◽  
Wenjie Ge ◽  
Rui Qian

In order to study the influence of the axial compression ratio and steel ratio on the shear-carrying capacity of steel-truss-reinforced beam-column joints, five shear failure interior joint specimens were designed. The effect of different coaxial pressure ratios (0.1, 0.2, and 0.3) and steel contents on the strain, ultimate bearing capacity, seismic performance, and failure pattern of cross-inclined ventral and chord bars in the joint core area was investigated. The experimental results show that the load-displacement hysteretic curves of all test specimens exhibit a bond-slip phenomenon. With the increase of the axial compression ratio, the ultimate bearing capacity of the joint core increases by 3.4% and 5.9%, respectively. While the ductility decreases by 10.3% and 13.1%, and the energy consumption capacity decreases by 3.2% and 5.8%, respectively. The shear capacity and ductility of the member with cross diagonal ventral steel angle in the joint core are increased by 12.9% and 13.4%, respectively. The shear capacity and ductility of the joint can be significantly improved by increasing the amount of steel in the core area. The expression of shear capacity suitable for this type of joint is obtained by fitting analysis, which can be used as a reference for engineering design.


2020 ◽  
pp. 136943322096372
Author(s):  
Xiuli Du ◽  
Min Wu ◽  
Hongtao Liu

In order to study the seismic performance of precast short-leg shear wall connected by grouting sleeves (PSSW), the three-dimensional numerical model was established by using the experiment of PSSW subjected to low cyclic loading. Based on good agreement between numerical results and experimental results, the numerical analysis models with different structural parameters of axial compression ratio and splicing position were designed in detail, and the effects of various parameters on the seismic performance of PSSW were analyzed. The results show that the PSSW exhibits wide and stable hysteresis loops, indicating a satisfactory hysteretic performance and an excellent energy consumption capacity. With the increase of the axial compression ratio, the shear capacity of horizontal splice seam is improved, but the ductility coefficient and total energy consumption decrease obviously. The most disadvantageous position of PSSW can be effectively avoided by changing the position of the post pouring seam. The bearing capacity of the specimens is basically stable, and the energy consumption increases significantly, so the post pouring seam of precast wall is recommended to be far away from the bottom section of the wall. In addition, the failure mechanism of different splicing positions was analyzed in detail.


2014 ◽  
Vol 488-489 ◽  
pp. 704-707
Author(s):  
Ying Wang ◽  
Miao Li ◽  
Jin Hua Xu ◽  
He Fan

Based on finite element analysis o f concrete filled steel tube beam-column joints under the single axial compression ratio and concrete strength, further research was done to analyze the seismic performance of concrete filled steel tube beam-column joints under different axial compression ratio and concrete strength. Beam-column joint which is connected by bolts with welding extended steel sheets at the beam root was analyzed. The results show that with the increase of axial compression ratio, strength and stiffness degradation of the joint accelerated gradually. Axial compression ratio at 0.3, 0.4 are appropriate values for joints specimen, load-displacement hysteresis curve of joint specimens is relatively plump and shows good seismic performance. Chance of concrete strength also had effect on seismic performance of joint specimen, but in contrast it is not so obviously.


Author(s):  
Xindong Ding ◽  
Shuqing Wang ◽  
Yu Liu ◽  
Zepeng Zheng

Axial compression tests were carried out on 6 square steel tube confined concrete short columns and 6 BFRP square pipe confined concrete axial compression tests. The concrete strength grades were C30, C40, and C50. The test results show that the failure modes of steel pipe and BFRP pipe are obviously different, and the BFRP pipe undergoes brittle failure. Compared with the short columns of concrete confined by BFRP pipes, the ultimate bearing capacity of axial compression is increased by -76.46%, -76.01%, and -73.06%, and the ultimate displacements are -79.20%, -80.78%, -71.71%.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Chengxiang C. X. Xu ◽  
Peng S. Sheng ◽  
Chong C. Wan

The experimental and shear strength analytical investigations carried out on seismic-damaged steel reinforced concrete (SRC) columns strengthened with enveloped steel jacket subjected to cyclic loading are presented in this paper. Four 1/2-scale SRC columns were designed and manufactured and the postearthquake damage, enveloped steel jacket-confined, and destructive tests were carried out under lateral cyclic loading. The effects of postearthquake damage degree and enveloped steel jacket-confined on shear capacity and ductility capacity were all well examined. Test results indicate that the ductility of seismic-damaged SRC columns strengthened with enveloped steel jacket increases with the reduction of the postearthquake damage degree. The results indicate that the calculation formula of shear bearing capacity of SRC columns is feasible. Based on GB50010-2010, ACI318-08, and CSA-04, three different shear models were established, and the calculated values of shear capacity are quite different, and the analysis of the shear strength of RC in the strengthened seismic-damaged SRC column cannot be ignored. The formula is verified, and the calculated results are consistent well with the experimental results.


2020 ◽  
Vol 5 (1) ◽  
pp. 8
Author(s):  
Yannian Zhang ◽  
Moncef L. Nehdi

This study investigates the behavior of cast-in-situ masonry cavity walls subjected to in-plane quasi-static loading. Thirteen cast-in-situ masonry cavity walls and one solid wall were tested under combined axial and quasi-static lateral loads. Test parameters included the tie shape, tie layout, thickness of the insulating layer, and the level of axial compression. The problems related to shear capacity and failure mechanisms of cast-in-situ masonry cavity walls were analyzed. Experimental results indicate that failure of most wall specimens occurred via crushing at corners, accompanied by flexural and diagonal cracks in the inner leaves. The shape and layout of the ties had a limited effect on the shear strength of cast-in-situ masonry cavity walls, while axial compression had a positive influence on shear strength. The relative displacement between the inner and outer leaves was nearly zero before walls cracked and reached less than 2 mm at the ultimate load. The shape and layout of the ties had a slight influence on the coordination of inner and outer leaves, while the insulating layer thickness and axial compression had a negative effect. Hysteretic loops under quasi-static loading were spindle-like, and wall specimens exhibited large nonlinear deformation capacity, indicating adequate aseismic capability. A new formula for calculating the shear capacity of the cast-in-situ cavity masonry walls was proposed and was demonstrated to be accurate.


2020 ◽  
pp. 136943322095683
Author(s):  
Bin Rong ◽  
Lei Wang ◽  
Ruoyu Zhang

This paper studied the shear behavior of the connections with external stiffening rings between square steel tubular columns and steel beams by experimental, numerical and analytical methods. Two connections with external stiffening rings were tested under low cyclic loading to investigate the effect of axial compression ratio on the shear behavior and capacity of the connection. The test result showed that the change of the axial compression ratio had little effect on the shear capacity of the connection while the ductility of the connection was decreasing with the increase of the axial compression ratio. Seven nonlinear finite element models were designed to investigate the seismic behavior of the connection under cyclic test. Parametric studies are carried out to study the influence of the following parameters on the shearing capacity and deformation in panel zone: the width and the height of the steel tube in panel zone and the thickness of the external stiffening rings. Finally, based on the model considering the post-buckling strength of the web of the steel tube in panel zone, a calculation formula was fitted by the results of the finite element simulation.


2021 ◽  
Vol 1020 ◽  
pp. 93-103
Author(s):  
Xi Kang Yan ◽  
Shun Zhang ◽  
Guo Liang Zhao ◽  
Xiao Chen ◽  
Bei Zhang

The construction joint is the weak part of the structure, and the P-δ effect is mostly ignored when considering the second-order effect, so it is necessary to study the influence of second-order effect on frame columns. Based on the above considerations, under different axial compression ratios, the mechanical properties of the construction joints of the frame columns with construction joints and the cast-in-situ frame columns were studied by low cycle repeated load testsand analyzed the influence of the second-order effect on the shear capacity of frame columns with joints. The test results indicate that the existence of construction joints reduces the shear-bearing capacity of the specimens, and the second-order effect has a greater impact on the columns with joints under the same axial compression ratio, and the shear capacity decreases more. With the increase of the axial compression ratio, the second-order effect will be weakened on the frame column with seam, but when the axial compression ratio exceeds a certain limit, the second-order effect will be increased.


Sign in / Sign up

Export Citation Format

Share Document