Study on Durability of C100 Concrete in Shenyang Royal WAN XIN Hotel

2009 ◽  
Vol 405-406 ◽  
pp. 19-23
Author(s):  
Da Li Zhang ◽  
Yuan Wang ◽  
Cui Hong Chen

Durability of C100 concrete in Shenyang WAN XIN Hotel engineering including long-term mechanical properties, dynamic modulus of elasticity, and chloride ion resistance was tested and analyzed. Test results appeared that C100 concrete had very good density and extremely good durability. Simultaneously we suggest improving the evaluation method to test the durability of super-high strength concrete in order to enhance the evaluation level effectively. It will provide one according of durability to apply super-high strength concrete.

2010 ◽  
Vol 163-167 ◽  
pp. 1655-1660
Author(s):  
Jian Zhang ◽  
Bo Diao ◽  
Xiao Ning Zheng ◽  
Yan Dong Li

The mechanical properties of high strength concrete(HSC) were experimentally investigated under mixed erosion and freeze-thaw cycling according to ASTM C666(Procedure B), the erosion solution was mixed by weight of 3% sodium chloride and 5% sodium sulfate. The mass loss, relative dynamic modulus of elasticity, compressive strength, elastic modulus and other relative data were measured. The results showed that with the increasing number of freeze-thaw cycles, the surface scaled more seriously; the mass loss, compressive strength and elastic modulus continued to decrease; the relative dynamic modulus of elasticity increased slightly in the first 225 freeze-thaw cycles, then decreased in the following 75 cycles; the corresponding strain to peak stress decreased with the increase of freeze-thaw cycles. After 200 cycles, the rate of deterioration of concrete accelerated obviously.


Author(s):  
Afzal Basha Syed ◽  
Jayarami Reddy B ◽  
Sashidhar C

In present era, high-strength concrete is progressively utilized in modern concrete technology and particularly in the construction of elevated structures. This examination has been directed to explore the properties of high-strength concrete that was delivered by using stone powder (SP) as an option of extent on sand after being processed. The aim of the research is to study the effect of replacement of sand with stone powder and substitution of cement with mineral admixtures (GGBS & Zeolite) on the mechanical properties of high strength concrete. The test results showed clear improvement in compression and split tensile nature of concrete by using stone powder and mineral admixtures together in concrete. The increment in the magnitude of compressive strength and split tensile strength are comparable with conventional concrete.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Neno Torić ◽  
Ivica Boko ◽  
Bernardin Peroš

This paper presents an experimental study of behaviour of high-strength concrete at high temperature. Reduction of the mechanical properties of concrete was determined starting from the period when the concrete specimens were heated to the maximum temperature and cooled down to ambient temperature and the additional 96 hours after the initial cooling of the specimens. The study includes determination of compressive strength, dynamic and secant modulus of elasticity, and stress-strain curves of concrete specimens when exposed to temperature level up to 600°C. The study results were compared with those obtained from other studies, EN 1994-1-2 and EN 1992-1-2. Tests point to the fact that compressive strength of concrete continues to reduce rapidly 96 hours after cooling of the specimens to ambient temperature; therefore indicating that the mechanical properties of concrete have substantial reduction after being exposed to high temperature. The study of the dynamic and secant modulus of elasticity shows that both of the properties are reduced but remain constant during the period of 96 hours after cooling. The level of postfire reduction of compressive strength of the analyzed concrete is substantial and could significantly affect the postfire load bearing capacity of a structure.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Baek-Il Bae ◽  
Hyun-Ki Choi ◽  
Bong-Seop Lee ◽  
Chang-Hoon Bang

Although mechanical properties of concrete under uniaxial compression are important to design concrete structure, current design codes or other empirical equations have clear limitation on the prediction of mechanical properties. Various types of fiber-reinforced reactive powder concrete matrix were tested for making more usable and accurate estimation equations for mechanical properties for ultra high strength concrete. Investigated matrix has compressive strength ranged from 30 MPa to 200 MPa. Ultra high strength concrete was made by means of reactive powder concrete. Preventing brittle failure of this type of matrix, steel fibers were used. The volume fraction of steel fiber ranged from 0 to 2%. From the test results, steel fibers significantly increase the ductility, strength and stiffness of ultra high strength matrix. They are quantified with previously conducted researches about material properties of concrete under uniaxial loading. Applicability of estimation equations for mechanical properties of concrete was evaluated with test results of this study. From the evaluation, regression analysis was carried out, and new estimation equations were proposed. And these proposed equations were applied into stress-strain relation which was developed by previous research. Ascending part, which was affected by proposed equations of this study directly, well fitted into experimental results.


2012 ◽  
Vol 476-478 ◽  
pp. 2534-2538
Author(s):  
Lai Bao Liu ◽  
Ke Feng Tan ◽  
Hai Long Yu

This study continued the investigation into the mechanical properties of high strength concrete filled steel tubular columns, (HSCFST). The test results for slender columns show that the load bearing capacities and maximum displacement ratio (the ratio of displacement to the initial length at peak load) of the column decreases as slenderness ratio, determined as the ratio of the length to diameter, increases. The test results for eccentrically loaded columns show that when the slenderness ratio is kept constant, the load bearing capacity and maximum strain decrease as the eccentricity ratio increases, with the eccentricity ratio defined as the ratio as the ratio of eccentricity to radius. The formula for calculating the load bearing capacities of slender columns and the eccentrically loaded columns are presented in the paper. These formulas are designed for inclusion in design code documents.


2011 ◽  
Vol 255-260 ◽  
pp. 664-668
Author(s):  
Wei Xu ◽  
Feng Xu ◽  
Hao Wang ◽  
Lian Guang Wang

Based on 5 test specimen of steel-high strength concrete composite beam, This paper analyzes test results, researches on mechanical properties of steel-high strength concrete composite beams, load-deformation properties, performance of the interface slip and strain of the midspan across-section of beams, Study on the performance of the steel-high strength concrete composite beams.


2011 ◽  
Vol 121-126 ◽  
pp. 126-131 ◽  
Author(s):  
Qing Lei Xu ◽  
Tao Meng ◽  
Miao Zhou Huang

In this paper, effects of nano-CaCO3 on compressive strength and Microstructure of high strength concrete in standard curing temperature(21±1°C) and low curing temperature(6.5±1°C) was studied. In order to improve the early strength of the concrete in low temperature, the early strength agent calcium nitrite was added into. Test results indicated that 0.5% dosage of nano-CaCO3 could inhibit the effect of calcium nitrite as early strength agent, but 1% and 2% dosage of nano-CaCO3 could improve the strength of the concrete by 13% and 18% in standard curing temperature and by 17% and 14% in low curing temperature at the age of 3days. According to the XRD spectrum, with the dosage up to 1% to 2%, nano-CaCO3 can change the orientation index significantly, leading to the improvement of strength of concrete both in standard curing temperature and low curing temperature.


Sign in / Sign up

Export Citation Format

Share Document