Design of Multi-Module Experiment-Rig of Ship Electrical Propulsion Prime Mover

2009 ◽  
Vol 419-420 ◽  
pp. 233-236
Author(s):  
Chun Ling Xie ◽  
Shu Ying Li

Diesel engine power plant, gas turbine power plant and steam turbine power plant are in common use in ship main propulsion power. These power plants have each advantage and disadvantage at mass, size, most high-power, economic ability, and maneuverability. But any single power is difficult to meet the requirement of improving the ships’ tactical performance, speed and maneuverability. In developing history of ship propulsion system, in order to solve the contradiction between full speed high-power and cruise economic ability, combined power plant form can change the performance of simple plant, which collected the advantage of all kinds of power plants[1]. Here combined power plant form is two or more same or not the same type engine combine used or trade off. The combined power plant can not only supply total power for ships when cruising, but also be more economical. So this plant is used widely. This paper, designs a multi-module experiment-rig and introduces its composition, working principle and disposition scheme, and carried out the dynamic characteristic experiment of the CODAG power plant.

Author(s):  
Chunling Xie ◽  
Zhitao Wang

Diesel engine power plant, gas turbine power plant and steam turbine power plant are in common use in ship main propulsion power. These power plants have each advantage and disadvantage at mass, size, most high-power, economic ability, and maneuverability. But any single power is difficult to meet the requirement of improving the ships’ tactical performance, speed and maneuverability. In developing history of ship propulsion system, in order to solve the contradiction between full speed high-power and cruise economic ability, combined power plant form can change the performance of simple plant, which collected the advantage of all kinds of power plants[1]. Here combined power plant form is two or more same or not the same type engine combine used or trade off. The combined power plant can not only supply total power for ships when cruising, but also be more economical. So this plant is used widely. This paper designs a multi-module experiment-rig and introduces its composition, working principle and disposition scheme, and designed survey and control System. The micro experiment-rig control system introduced SIMATIC S 7-400 of Siemens Inc. This system can simple the structure and reduce much interface assembly. The bounds of master and industrial controller, continuous and logical system, concentrated and distributed system can be overcome. The surveillance system used the S7-300 PLC of Siemens Inc. This system can analyze and process the data, display by the Real-time report forms, the curves of changed trend, and dynamic menu. Then surveillance and analytic report was created. So the surveillance system of micro experiment-rig supplied data platform for analyzing the running characteristic combined power plant.


2019 ◽  
Vol 8 (4) ◽  
pp. 9449-9456

This paper proposes the reliability index of wind-solar hybrid power plants using the expected energy not supplied method. The location of this research is wind-solar hybrid power plants Pantai Baru, Bantul, Special Region of Yogyakarta, Indonesia. The method to determine the reliability of the power plant is the expected energy not supplied (EENS) method. This analysis used hybrid plant operational data in 2018. The results of the analysis have been done on the Pantai Baru hybrid power plant about reliability for electric power systems with EENS. The results of this study can be concluded that based on the load duration curve, loads have a load more than the operating kW of the system that is 99 kW. In contrast, the total power contained in the Pantai Baru hybrid power plant is 90 kW. This fact makes the system forced to release the load. The reliability index of the power system in the initial conditions, it produces an EENS value in 2018, resulting in a total value of 2,512% or 449 kW. The EENS value still does not meet the standards set by the National Electricity Market (NEM), which is <0.002% per year. Based on this data, it can be said that the reliability of the New Coast hybrid power generation system in 2018 is in the unreliable category.


2021 ◽  
Vol 286 ◽  
pp. 04013
Author(s):  
George Iulian Balan ◽  
Octavian Narcis Volintiru ◽  
Ionut Cristian Scurtu ◽  
Florin Ioniță ◽  
Mirela Letitia Vasile ◽  
...  

Vessels that have navigation routes in areas with ambient temperatures that can drop below + 5 [°C], with a relative humidity of over 65%, will have implemented technical solutions for monitoring and combating ice accumulations in the intake routes of gas turbine power plants. Because gas turbines are not designed and built to allow the admission of foreign objects (in this case - ice), it is necessary to avoid the accumulation of ice through anti-icing systems and not to melt ice through defrost systems. Naval anti-icing systems may have as a source of energy flow compressed air, supersaturated steam, exhaust gases, electricity or a combination of those listed. The monitoring and optimization of the operation of the anti-icing system gives the gas turbine power plant an operation as close as possible to the normal regimes stipulated in the ship's construction or retrofit specification.


Author(s):  
Alberto Vannoni ◽  
Andrea Giugno ◽  
Alessandro Sorce

Abstract Renewable energy penetration is growing, due to the target of greenhouse-gas-emission reduction, even though fossil fuel-based technologies are still necessary in the current energy market scenario to provide reliable back-up power to stabilize the grid. Nevertheless, currently, an investment in such a kind of power plant might not be profitable enough, since some energy policies have led to a general decrease of both the average price of electricity and its variability; moreover, in several countries negative prices are reached on some sunny or windy days. Within this context, Combined Heat and Power systems appear not just as a fuel-efficient way to fulfill local thermal demand, but also as a sustainable way to maintain installed capacity able to support electricity grid reliability. Innovative solutions to increase both the efficiency and flexibility of those power plants, as well as careful evaluations of the economic context, are essential to ensure the sustainability of the economic investment in a fast-paced changing energy field. This study aims to evaluate the economic viability and environmental impact of an integrated solution of a cogenerative combined cycle gas turbine power plant with a flue gas condensing heat pump. Considering capital expenditure, heat demand, electricity price and its fluctuations during the whole system life, the sustainability of the investment is evaluated taking into account the uncertainties of economic scenarios and benchmarked against the integration of a cogenerative combined cycle gas turbine power plant with a Heat-Only Boiler.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Nuttapol Lerkkasemsan ◽  
Luke E. K. Achenie

This paper considers both LCA and LCC of the pyrolysis of switchgrass to use as an energy source in a conventional power plant. The process consists of cultivation, harvesting, transportation, storage, pyrolysis, transportation, and power generation. Here pyrolysis oil is converted to electric power through cocombustion in conventional fossil fuel power plants. Several scenarios are conducted to determine the effect of selected design variables on the production of pyrolysis oil and type of conventional power plants. The set of design variables consist of land fraction, land shape, the distance needed to transport switchgrass to the pyrolysis plant, the distance needed to transport pyrolysis oil to electric generation plant, and the pyrolysis plant capacity. Using an average agriculture land fraction of the United States at 0.4, the estimated cost of electricity from pyrolysis of 5000 tons of switchgrass is the lowest at $0.12 per kwh. Using natural gas turbine power plant for electricity generation, the price of electricity can go as low as 7.70 cent/kwh. The main advantage in using a pyrolysis plant is the negative GHG emission from the process which can define that the process is environmentally friendly.


Author(s):  
Lorenzo Dambrosio ◽  
Marco Bomba ◽  
Sergio M. Camporeale ◽  
Bernardo Fortunato

A diagnostic tool able to detect faults that may occur in a gas turbine power plant at an early stage of their emergence is of a great importance for power production. In the present paper, a diagnostic tool, based on Feed Forward Neural Networks (FFNN), has been proposed for gas turbine power plants with a condition monitoring approach. The main aim of the proposed diagnostic tool is to reliably detect not only every considered single fault, but also two or more faults that may occur contemporarily. Two different FFNNs compose the proposed diagnostic tool. The first network, that is not-fully connected, operates a fault pre-processing in order to evaluate the influence of the single fault variable on the single fault condition. The second FFNN detects the fault conditions by means of an iterative process. Such a diagnostic tool has been applied to a mathematical model of a single shaft gas turbine for power generation, resulting able to detect the 100% of single faults and the 80% of combined faults.


Author(s):  
Henry Egware ◽  
Albert I. Obanor ◽  
Harrison Itoje

Energy and exergy analyses were carried out on an active 42MW open cycle gas turbine power plant. Data from the power plant record book were employed in the investigation. The First and Second Laws of Thermodynamics were applied to each component of the gas power plant at ambient air temperature range of 21 - 330C. Results obtained from the analyses show that the energy and exergy efficiencies decrease with increase in ambient air temperature entering the compressor. It was also shown that 66.98% of fuel input and 54.53% of chemical exergy are both lost to the environment as heat from the combustion chamber in the energy and exergy analysis respectively. The energy analysis quantified the efficiency of the plant arising from energy losses , while exergy analysis revealed the magnitude of losses in various components of the plant. Therefore a complete thermodynamic evaluation of gas turbine power plants requires the use of both analytical methods.


2021 ◽  
Vol 93 ◽  
pp. 01019
Author(s):  
G.A. Kilin ◽  
B.V. Kavalerov ◽  
A.I. Suslov ◽  
M.A. Kolpakova

Gas turbine units are widely used as a drive for a synchronous generator in a gas turbine power plant. The main problem here lies in the fact that the control systems of such gas turbine plants are transferred practically unchanged from their aviation counterparts. This situation leads to inefficient operation of the gas turbine power plant, which affects the quality of electricity generation. To solve this problem, it is necessary to improve the control algorithms for the automatic control systems of gas turbine plants. When solving this problem, gas turbine plants should be considered in interaction with other subsystems and units; for gas turbine power plants, this is, first of all, an electric generator and the electric power system as a whole. Setting up a control system is one of the most costly stages of their production, both in terms of finance and time. Especially time-consuming operations are non-automated manual configuration management system for developmental and operational testing. Therefore, it is proposed to use a software-modeling complex, on the basis of which it is possible to obtain a neural network mathematical model of a gas turbine power plant and conduct its tests.


2020 ◽  
Vol 5 (8) ◽  
pp. 858-863
Author(s):  
Isaiah Allison ◽  
Roupa Agbadede

This study presents the analysis of associated gas fueled gas turbine power plant with a view to harnessing associated gas. GASTURB performance simulation software was employed to model and simulate the design and off design performance of the various engines that made up the power plant investigated. Monte Carlo Simulation using Palisade’s @RISK software was employed to conduct the risk analysis of associated fueled gas turbine by incorporating different variables. A decline rate of -13% was applied over the 20-year period of power plant life, beginning from Year 2015. When the distribution curves for the clean and degraded conditions of DS25 engine set were compared, the plots show that the clean condition generates higher profit than the degraded condition.  Also, when the clean condition for DS25 and LM6K engine sets were compared, the distribution curve plots show that the cluster of DS25 engine set generates a higher profit than the LM6K engine set.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Alberto Vannoni ◽  
Andrea Giugno ◽  
Alessandro Sorce

Abstract Renewable energy penetration is growing, due to the target of greenhouse-gas-emission reduction, even though fossil fuel-based technologies are still necessary in the current energy market scenario to provide reliable back-up power to stabilize the grid. Nevertheless, currently, an investment in such a kind of power plant might not be profitable enough, since some energy policies have led to a general decrease of both the average single national price of electricity (PUN) and its variability; moreover, in several countries, negative prices are reached on some sunny or windy days. Within this context, combined heat and power (CHP) systems appear not just as a fuel-efficient way to fulfill local thermal demand but also as a sustainable way to maintain installed capacity able to support electricity grid reliability. Innovative solutions to increase both the efficiency and flexibility of those power plants, as well as careful evaluations of the economic context, are essential to ensure the sustainability of the economic investment in a fast-paced changing energy field. This study aims to evaluate the economic viability and environmental impact of an integrated solution of a cogenerative combined cycle gas turbine power plant with a flue gas condensing heat pump. Considering capital expenditure, heat demand, electricity price, and its fluctuations during the whole system life, the sustainability of the investment is evaluated taking into account the uncertainties of economic scenarios and benchmarked against the integration of a cogenerative combined cycle gas turbine power plant with a heat-only boiler (HOB).


Sign in / Sign up

Export Citation Format

Share Document